
Maximum Bipartite Flow in Networks with

Adaptive Channel Width∗

Yossi Azar† Aleksander M ↪adry‡ Thomas Moscibroda§

Debmalya Panigrahi¶ Aravind Srinivasan‖

Abstract

Traditionally, network optimization problems assume that each link in
the network has a fixed capacity. Recent research in wireless networking
has shown that it is possible to design networks where the capacity of the
links can be changed adaptively to suit the needs of specific applications.
In particular, one gets a choice of having a few high capacity outgoing
links or many low capacity ones at any node of the network. This moti-
vates us to have a re-look at classical network optimization problems and
design algorithms to solve them in this new framework. In particular, we
consider the problem of maximum bipartite flow, which has been studied
extensively in the fixed-capacity network model. One of the motivations
for studying this problem arises from the need to maximize the through-
put of an infrastructure wireless network comprising base-stations (one
set of vertices in the bipartition) and clients (the other set of vertices in
the bipartition). We show that this problem has a significantly different
combinatorial structure in this new network model from the fixed-capacity
one. While there are several polynomial time algorithms for the maximum
bipartite flow problem in traditional networks, we show that the problem
is NP-hard in the new model. In fact, our proof extends to showing that

∗A preliminary version of this paper appeared in the Proceedings of ICALP, 2009.
†Tel Aviv University, Tel Aviv 69978, Israel. Part of this work was done while visiting

Microsoft Research, Redmond, WA 98052. Research supported in part by the Israeli Science
Foundation (grant No. 1404/10). Email: azar@tau.ac.il.

‡Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, MA 02139. Research supported by NSF contract CCF-0829878 and by
ONR grant N00014-05-1-0148. Email: madry@mit.edu.

§Microsoft Research, Redmond, WA 98052. Email: moscitho@microsoft.com.
¶Corresponding Author. Contact Address: 32 Vassar Street, G-696, The Stata Center,

Cambridge MA 02139. Contact Phone: +1 (617) 2585791. Contact Fax: +1 (617) 2533480.
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, Cambridge, MA 02139. Part of this work was done while the author was an intern
at Microsoft Research, Redmond, WA 98052. Research supported in part by NSF contract
CCF-0635286. Email: debmalya@mit.edu.

‖Dept. of Computer Science and Institute for Advanced Computer Studies, University of
Maryland, College Park, MD 20742. Part of this work was done while visiting Microsoft
Research, Redmond. Research supported in part by NSF ITR Award CNS-0426683, NSF
Award CNS-0626636, and NSF Award CNS-1010789. Email: srin@cs.umd.edu.

1

the problem is APX-hard. We complement our lower bound by giving two
algorithms for solving the problem approximately. The first algorithm is
deterministic and achieves an approximation factor of O(log N), where
N is the number of nodes in the network, while the second algorithm is
randomized and achieves an approximation factor of e

e−1
.

Keywords: Graph algorithm; maximum flow; linear program rounding;
wireless networks; adaptive channel width.

1 Introduction

Wireless networking is in the midst of a major paradigm shift. At the core of this
shift is a more flexible interpretation and use of the spectrum as the medium of
communication. Existing infrastructure-based wireless systems (such as Wi-Fi)
partition the available spectrum into fixed channels of equal width (in Wi-Fi,
every channel has a channel-width of 20 Mhz), and every node picks one or more
(if it is equipped with more than one radio) of these channels to transmit on.
In contrast, recent work [5] shows that it is beneficial (and feasible) to vary the
width of a wireless communication channel adaptively, depending on the needs
of particular applications, as well as other factors. A key ramification of adap-
tively changing channel widths is the trade-off between throughput and range of
communication channels. It has been demonstrated in [5, 21] that throughput
increases monotonically with channel width (as predicted by Shannon’s capacity
formula [23]).1 However, transmitting on a wider channel reduces the transmis-
sion range, thereby disconnecting receivers that are far from the transmitter.
This can be alternatively viewed as a link having a threshold channel width,
beyond which it ceases to exist. Thus, while choosing channel widths, there
is a tension between achievable throughput on the resulting channel and the
range of transmissions on the channel. This leads to a new suite of network
optimization problems, which are structurally different from their counterparts
in fixed-capacity networks.

We focus on a representative problem from this class, that of maximizing
throughput in a network comprising base-stations and clients. In this problem,
each client is connected to a subset of base-stations via communication links. We
are required to choose the channel width of each communication link, with the
restriction that all communication links originating at a base-station must have
identical channel width. Since throughput is a monotonically increasing function
of channel width, selecting a throughput for a base-station uniquely determines
the channel width of its outgoing communication links. Further, the threshold
channel width of each link (beyond which it does not exist) can be translated
into a threshold throughput. Thus, our problem now is to select a throughput for
each base-station; all outgoing links which have a higher threshold get channel
capacity equal to the selected throughput, while all outgoing links with a lower
threshold disappear (i.e. get channel capacity equal to 0).

1In fact, it has been shown that throughput is (roughly) linearly related to channel width.

2

Problem Definition. We are given a set of base-stations B and a set of clients
C with |B| = n and |C| = m. Each base-station B ∈ B has a budget β(B), which
is the total capacity that the base-station can deliver to its clients. On the other
hand, each client C ∈ C has a demand α(C), which is the total bandwidth it
would like to be allocated from all the base-stations together.

For each base-station and client pair (henceforth, called a base-client pair)
(B, C), there is a critical capacity η(B, C), which corresponds to the maximum
channel width of a link from B to C. To each base station B ∈ B, the algorithm
assigns a threshold τ(B) that determines the capacity of a link (B, C) (denoted
by ψτ (B, C)) as follows

ψτ (B, C) :=
{

τ(B) , τ(B) ≤ η(B, C)
0 , otherwise

Once the capacities of all links have been fixed, we want to find a flow f(B, C)
for each link (B, C) such that neither any link capacity is violated (capacity
constraint), i.e.

f(B, C) ≤ ψτ (B, C),

nor any base-station budget is violated (budget constraint), i.e.
∑

C∈C
f(B, C) ≤ β(B).

The goal is to find the threshold assignment τ , and corresponding flow f that
maximizes the sum of satisfied demands of all the clients, where the satisfied
demand ατ,f (C) of a client C is given by

ατ,f (C) = min
(∑

B∈B
f(B, C), α(C)

)
.

Note that given any τ and f , there always exists a flow f ′ which satisfies the
budget and capacity constraints, achieves the same value of total satisfied de-
mand and additionally satisfies the following demand constraints,

∑

B∈B
f(B,C) ≤ α(C)

As a result, we will focus on flows that obey demand constraints along with
budget and capacity constraints.

The benefit of this assumption is that our problem now corresponds to the
maximum bipartite flow problem in networks with adaptive channel width. Re-
call that in this flow problem, we have two sets of nodes X and Y with edges
directed from X to Y , along with a supersource s and a supersink t. To draw
the correspondence, let X be the set of base-stations and Y the set of clients.
The edge from s to any x ∈ X (called a budget arc) has capacity β(x), that
from any x ∈ X to any y ∈ Y has critical capacity η(x, y) and that from any
y ∈ Y to t (called a demand arc) has capacity α(y) (refer to Figure 1). We call

3

s t

β(B1)

β(B2)

B1

B2

C1

C2

C3

α(C1)

α(C2)

α(C3)

η(B1, C1)

η(B1, C2)

η(B2, C1)

η(B1, C3)

η(B2, C2)

η(B2, C3)

Figure 1: The augmentation graph corresponding to an instance of the problem.

this graph the augmentation graph of the given problem instance). Our task
is to choose threshold values (i.e. the function τ) for vertices in X; this fixes
the capacities of all the arcs from X to Y . Our goal is to choose τ so that the
maximum flow in the resulting capacitated network is maximized.

Related Work. Classically, the maximum bipartite flow problem has been
solved as a special case of the more general maximum flow problem on arbitrary
graphs. Suppose the input graph G = (V,E) has maximum flow of c from
the source to the sink. Ford and Fulkerson gave the first algorithm for the
maximum flow problem in the 1950s, which had a running time of O(|E|c) [10].
Since then, several algorithms have been developed with better time bounds [7,
8, 9, 12] finally culminating in an Õ(|E|min(|E|1/2, |V |2/3) log c) algorithm due
to Goldberg and Rao [11], which is currently the fastest known deterministic
algorithm for maximum flow. It may be noted here that a substantial amount
of work has also been done for developing randomized algorithms for maximum
flow [15, 17, 16, 18], but these algorithms apply only to undirected networks. On
the other hand, the maximum bipartite flow problem with unit capacities (which
is equivalent to maximum bipartite matching) can be solved in O(|E|

√
|V |)

time [14].
To summarize the above discussion, the maximum bipartite flow problem in

directed graphs with capacitated edges is solvable in polynomial time; however,
there is no algorithm which solves this problem faster than in general directed
graphs. As we will see, this is in sharp contrast to what we observe in networks
with adaptive channel width. In such networks, the maximum bipartite flow
problem is NP-hard (in fact, it is APX-hard); further, we give a randomized
approximation algorithm achieving an approximation factor of e

e−1 which does
not appear to extend easily to general directed networks.

We also briefly mention a related class of well-studied problems, namely
unsplittable flow problems. In these problems, typically there are one or more

4

pairs of source and sink vertices with specific demands, and the goal is to connect
the source-sink pairs using paths such that the satisfied demand is maximized
while not violating any capacity constraint. These problems are typically NP-
hard, and several variants have been studied extensively [19, 24, 13, 3, 4, 6].
Interestingly, though we have a single source and a single sink, and flow is
allowed to re-distribute arbitrarily at a node, the techniques we use to give an
approximation algorithm for our problem bear similarities with the techniques
usually used for solving unsplittable flow problems. Specifically, both problems
use a suitable linear programming relaxation which is then rounded ensuring
that certain cuts are large in the rounded solution.

Our Results. Our first claim is that the maximum bipartite flow problem in
networks with adaptive channel width is APX-hard, i.e., it is unlikely that a
polynomial-time algorithm can approximate the problem within a certain con-
stant factor. Specifically, we describe an L-reduction from the APX-hard Max-
imum Bounded 3-Dimensional Matching problem (Max-3DM) to the channel
width assignment problem. As mentioned above, this is in contrast to maxi-
mum bipartite flow on fixed-capacity networks, where the problem is solvable
in polynomial time.

Theorem 1. The maximum bipartite flow problem in networks with adaptive
channel width is APX-hard.

Our next contribution is a greedy combinatorial algorithm which achieves
an approximation factor of O(log N), where N = max(m,n). The algorithm
first categorizes links according to their critical capacity in geometrically spaced
intervals. Now, observe that for any interval, we can set the assigned capacities
at the nodes such that all the links in that interval have capacity equal to their
critical capacities (while all other links have potentially no capacity at all).
The algorithm needs to decide which interval to choose. For this purpose, a
maximum flow algorithm is run on the entire graph, assuming that each link
has capacity equal to its critical capacity. This outputs a flow on each link.
The algorithm greedily chooses the interval which carries the greatest amount
of flow on its links.

Finally, our main result is a randomized algorithm for this problem.

Theorem 2. There is a randomized polynomial-time algorithm for the maxi-
mum bipartite flow problem in networks with adaptive channel width that has
an expected approximation factor of e

e−1 .

Our algorithm uses a linear programming relaxation of the problem. Recall
that the celebrated Menger’s theorem implies that maximum flow from s to t
equals the minimum s − t cut. So, an algorithm for the problem should aim
to choose assigned capacities so as to maximize the minimum s − t cut in the
resulting capacitated network. Now, let us consider any linear programming
formulation of the problem; such a fractional linear program can be interpreted
as a polytope, where its optimal solution is a convex combination of the vertices

5

of the polytope. Each vertex of the polytope represents a particular choice
of assigned capacities and therefore, a particular capacitated graph (call them
vertex graphs); these correspond to the integral solutions we will round our
solution to. The natural linear program that we consider first simply ensures
that for each cut, the convex combination of the values of the cut in the vertex
graphs is large. However, since each vertex graph may have a different minimum
s − t cut, this does not guarantee that sizes of these minimum s − t cuts are
large. In fact, this linear program has an integrality gap of Ω(log N/ log log N).
To overcome this problem, we design a more sophisticated linear program and
a corresponding randomized rounding technique that ensures that the minimal
s− t cuts in the vertex graphs are large.

Roadmap. Section 2 describes a reduction from 3-dimensional matching to
show APX-hardness of our problem. Section 3 contains both the deterministic
and randomized algorithms for our problem. Finally, we conclude in section 4
with some related open problems.

2 APX-hardness

We show that the maximum bipartite flow problem in networks with adaptive
channel width is APX-hard, i.e., it is unlikely that a polynomial-time algorithm
can approximate the problem within a certain constant factor. Specifically, we
describe an L-reduction from the APX-hard Maximum Bounded 3-Dimensional
Matching problem (Max-3DM) to the channel width assignment problem. Our
construction draws on some ideas from Lenstra, Shmoys & Tardos [20] and from
[2]. The Max-3DM problem is defined as follows.

Instance: Three disjoint sets A = {a1, . . . , ap}, B = {b1, . . . , bp},
and C = {c1, . . . , cp}, together with a subset of triples T ⊆ A×B×C.
Any element in A, B, C occurs in one, two, or three triples in T ;
note that this implies p ≤ |T | ≤ 3p.
Goal: Find a subset T ′ ⊆ T of maximum cardinality such that no
two triples of T ′ agree in any coordinate.
Measure: The measure of a feasible solution T ′ is the cardinality
of T ′.

Petrank [22] has shown that Max-3DM is APX-hard even if one only allows
instances where the optimal solution consists of p = |A| = |B| = |C| triples;
in the following we will only consider this additionally restricted version of
Max-3DM.

For the L-reduction we specify two functions Γ1 and Γ2 as follows. Γ1 maps
each instance I of Max-3DM into an instance of the channel-width assignment
problem R(I), and Γ2 maps a feasible solution of R(I) back to a feasible solution
of I. Specifically, any instance I of Max-3DM is mapped by Γ1 into an instance
R(I) that contains n = |T | base-stations and m = 3p+1 clients as follows:

6

• For every triple Ti ∈ T , there is a corresponding base-station Bi with a
budget β(Bi) = 4.

• For elements aj , bj , and cj for every j = 1, . . . , p, there are corresponding
clients Ca

j , Cb
j , and Cc

j , each with demand 1.
• Additionally, there is one “large client” Cz with demand α(Cz) = 4(|T | −

p) + p = 4|T | − 3p.
• Each base-station Bi has one link to each of the three clients corresponding

to the elements that are contained the triple Ti = (aj , bk, cl): Links (Bi, C
a
j),

(Bi, C
b
k), and (Bi, C

c
l) with critical capacity 1, i.e., η(Bi, C

a
j) = η(Bi, C

b
k) =

η(Bi, C
c
l) = 1. In addition, it has a fourth link (Bi, Cz) with critical ca-

pacity η(Bi, Cz) = 4. No other client is connected to this base station, i.e.,
η(Bi, C) = 0 for any other client C.
Note that the total demand is equal to the total budget. This completes the

description of the instance R(I). Since we only consider instances of Max-3DM
where the optimal solution consists of p triples, we have Opt(I) = p. Now con-
sider the following assignment for instance R(I): For each triple Ti = (aj , bk, cl)
in the optimal solution to I, we select a capacity threshold τ(Bi) = 1 and send
a flow of 1 to the element clients (i.e., f(Bi, C

a
j) = f(Bi, C

b
k) = f(Bi, C

c
l) = 1),

and f(Bi, Cz) = 1 to Cz. All the other |T | − p base-stations choose a capacity
threshold of τ(Bi) = 4 and send flow of f(Bi, Cz) = 4 to z. These base-stations
cannot send any flow to the clients corresponding to their constituent elements.
Hence each base-station sends a flow of 4 and each client receives its full demand,
i.e., the total flow is 4|T |. Therefore, Opt(R(I)) = 4|T | ≤ 12p = 12 ·Opt(I).

We now describe mapping Γ2. Let τ be an assignment for a channel-width
instance R(I); let c(τ) be the total flow in the network for assignment τ . For
every base-station that is assigned a threshold of ≤ 1, we make the threshold
1, and for every base-station that is assigned a threshold of > 1, we make the
threshold 4; let B1 and B4 be the corresponding sets of base-stations. Observe
that all flows in τ remain feasible even after this change in thresholds. We now
change the flows in τ so that the total flow does not decrease. The base-stations
in B1 are processed in an arbitrary order and each base-station in B1 is given a
flow of 1 to every client it connects to provided the client’s demand has not been
satisfied already, and a flow of 1 to Cz. Now, for every base-station Bi ∈ B4, we
give a flow of 4 to the (Bi, Cz) edge. If |B1| < p, then this causes an overflow at
Cz and we move p − |B1| base-stations from B4 to B1. Then, Cz’s demand is
exactly met since |B1| = p. Note that none of the changes to the flow decreases
the total flow in the network.

Now, let each base-station in B1 that has an outflow of 4 be called good; let
x be the number of good base-stations. Then, (1) the good base-stations form
an independent set of triples, and (2) the total flow in the network is at most
4|T | − (|B1| − x). We define Γ2(τ) = x. Then,

Opt(I)− Γ2(τ) = p− x ≤ |B1| − x ≤ Opt(R(I))− c(τ).

Since the functions Γ1 and Γ2 are computable in polynomial time, we have
proved Theorem 1.

7

Budget Critical Capacity Demand
B1 B2 C1 C2 C3 C1 C2 C3
20 30 B1 100 20 2 100 10 50

B2 10 0 40

Figure 2: The budgets, critical capacities and demands in the running example.

3 Algorithms for Maximum Bipartite Flow

3.1 A Combinatorial Algorithm

Recall that we have n base-stations and m clients. We present a combinato-
rial greedy algorithm that achieves an approximation ratio of O(log N), where
N = max(n, m). This algorithm has two steps- the first step pre-processes the
given instance of the problem to produce a more structured instance while mod-
ifying the optimal solution by only a constant factor. The second step provides
an algorithm for such structured instances of the problem which has an approx-
imation ratio of O(log N). The two steps, in combination, yield an O(log N)
approximation algorithm for all instances of the problem.

To describe the algorithm, we will use a running example. Let there be 2
base-stations B1 and B2 and 3 clients C1, C2 and C3. The budgets, critical
capacities and demands are given in the Figure 2.

We will also need the following definitions. A link (B, C) is said to be
maximal if its critical capacity is the maximum among all the links, i.e. if

η(B, C) ≥ η(B′, C ′), ∀B′ ∈ B, ∀C ′ ∈ C.
In our example, the link (B1, C1) is maximal. A link (B, C) is said to be
infeasible if its critical capacity is greater than either the budget of base-station
B or the demand of client C, i.e. if

η(B, C) > min(β(B), α(C));

otherwise, the link is said to be feasible. In our example, links (B2, C1) and
(B1, C3) are feasible (ignoring link (B2, C2) which has critical capacity of 0);
all other links are infeasible.

Pre-processing. The pre-processing comprises three steps. In the first step,
we decrease the critical capacity of all maximal infeasible links until either some
other link becomes maximal or there is at least one maximal feasible link. In
the second case, we stop, while in the first case, we again iterate by decreasing
the critical capacities of all the (bigger set of) maximal infeasible links. In
the example, we first decrease η(B1, C1) to 40, at which stage (B2, C3) also
becomes maximal (but is also infeasible). We now decrease both η(B1, C1) and
η(B2, C3) to 30, when (B2, C3) becomes feasible.

Lemma 1. The above modification does not change the optimum value of an
instance of the problem.

8

C1 C2 C3
B1 16 16 0
B2 8 0 16

Figure 3: Critical capacities after rounding.

Proof. We prove this inductively, proving that in any particular iteration, an
optimal flow before the iteration continues to be achievable after the iteration.
Denote the maximum critical threshold among all links at base-station B in
the modified instance by M(B). Also denote the maximum flow on a link
at B and the threshold at B in the optimal solution by F ∗(B) and τ∗(B)
respectively. F ∗(B) ≤ M(B) since otherwise, F ∗(B) would violate either the
budget constraint at B or the demand constraint at the corresponding client.
We can therefore set the threshold at B to max(M(B), τ∗(B)) without changing
any flow; performing this for all base-stations B produces a solution for the
modified instance which is equal in value to an optimal solution for the original
instance.

The important property of this transformation is that we are now guaranteed
a solution of value equal to the maximum critical capacity in the modified
instance. Specifically, this is achieved by saturating the capacity on the maximal
feasible link. This solution is called the maximal saturation solution.

In the second pre-processing step, let us consider all links with critical ca-
pacity at most 1/N2 times that of a maximal link (call these weak links). We
decrease the critical capacity of all weak links to 0. In our example, η(B1, C3)
is decreased to 0.

Lemma 2. The optimum value of the modified instance of the problem is at
least half of the optimum value before the modification.

Proof. Since there are nm ≤ N2 links overall, the total flow in all the weak
links in an optimal solution before the modification is at most as much as the
value of the maximal saturation solution. Thus, either (1) the total flow in the
weak links is at most half the original optimum, or (2) the maximal saturation
solution (which is also a solution in the modified instance) is at least half in
value to the original optimum.

We now describe the final pre-processing step. We scale down all critical
capacities by the minimum non-zero critical capacity; all the (non-zero) critical
capacities are in the range 1 to N2. Then, we round down all critical capacities
by a factor of at most 2 to one of the O(log N) values {2i : 0 ≤ i ≤ 2 log N}. In
our example, the new set of critical capacities is given in Figure 3.

Lemma 3. The optimum value of the modified instance of the problem is at
least half of the optimum value before the modification.

Proof. All the thresholds at the base-stations and the flows on the links in an
optimal solution to the instance before the modification can be halved to obtain
a solution to the modified instance.

9

Algorithm for Modified Problem Instance. We set the capacity of each
link (B, C) to its critical capacity η(B, C). Using these link capacities, we
construct the augmentation graph of the instance of the problem. We then run
a maximum s− t flow sub-routine on this augmentation graph.

Lemma 4. The maximum s − t flow obtained above is an upper bound on the
value of an optimal solution to our problem instance.

Proof. Irrespective of the threshold at each base-station in the optimal solution,
the capacity of each link is at most as much as its critical capacity, which is
the capacity in the augmentation graph for which we obtain the maximum s− t
flow. Thus, the flows on the links in the optimal solution do not violate any
capacity constraint in the augmentation graph.

We now partition the base-client links into O(log N) groups according to
their critical capacity- the ith group contains all links with capacity 2i. In our
example, (B1, C1), (B1, C2) and (B2, C3) are in the 4th group, while (B2, C1)
is in the 3rd group. All other groups are empty. It is important to note that if
we set the threshold of all base-stations to 2i; then all links in the ith group have
capacity 2i. The maximum flow can also be split into O(log N) parts according
to the flow carried by the links in each group. If the ith group carries the largest
flow among the groups, then we set the threshold of all base-stations to 2i and
obtain a solution to our problem whose value is at least a 1/ log N fraction of
the maximum flow. Combining this observation with the above lemma gives the
following theorem.

Theorem 3. The above algorithm has an approximation factor of O(log N).

3.2 A Linear Program

Our goal now is to improve upon this combinatorial algorithm. Without loss of
generality, we may assume that the assigned capacity chosen at any base-station
B in an optimal solution is one among the critical capacities of its outgoing
edges, i.e. τ(B) ∈ {η(B, C) : C ∈ C}. If this is not the case, then the assigned
capacity can be increased to the closest value ≥ τ(B) from the set {η(B, C) :
C ∈ C} without changing the flow on any link. This allows us introduce the
boolean capacity choice function p(B, C), which is 1 if τ(B) = η(B, C), and 0
otherwise. For any base-station B, p(B, C) should be 1 for exactly one client
C (called the choice constraint), breaking ties arbitrarily. We also introduce
another new notation, CB(C) which represents the set of clients for which the
critical capacity of their link to base-station B is less than that for client C, i.e.

CB(C) = {C ′ ∈ C : η(B, C ′) ≤ η(B,C)}.

A natural formulation of the problem is via the following integer linear pro-
gram (ILP), where constraints (1), (2), (3) and (4) correspond to budget, de-
mand, capacity and choice constraints respectively.

10

maximize
∑

B∈B
∑

C∈C f(B, C) subject to

∑

C∈C
f(B, C) ≤ β(B), ∀B ∈ B (1)

∑

B∈B
f(B, C) ≤ α(C), ∀C ∈ C (2)

f(B, C) ≤
∑

C′∈CB(C)

p(B,C ′)η(B, C ′), ∀B ∈ B, ∀C ∈ C (3)

∑

C∈C
p(B, C) = 1, ∀B ∈ B (4)

p(B, C) ∈ {0, 1}, ∀B ∈ B, ∀C ∈ C (5)
f(B, C) ≥ 0, ∀B ∈ B, ∀C ∈ C. (6)

LP Relaxation. To make this ILP tractable, we relax constraint (5) and allow
the function p to assume values between 0 and 1 (call this the fractional program
or FLP). The natural interpretation is that p(B,C) denotes the goodness of
η(B, C) as the assigned capacity of base-station B. Mathematically, it can be
thought of as the probability with which η(B, C) should be the assigned capacity
of base-station B.

Unfortunately, it turns out that this natural linear programming relaxation
fails to provide us with an approximation guarantee that is significantly better
than the one achieved by the combinatorial algorithm. To understand why this
is the case, let us note that for a given choice of values of p(B,C), this linear
program is solving the max-flow problem in the augmentation graph where the
capacity u of a link (B,C) is the following: if the assigned capacity τ(B) at base-
station B is chosen according to the probability distribution given by p(B, C),
then

u = E[ψτ (B, C)].

Therefore, by max-flow/min-cut duality, the approach used in the LP boils down
to choosing p(B,C) in such a way that the minimal expected capacity among
all s-t-cuts in the augmented graph is maximized. Given some final choice of
p(B, C) computed by the linear program, it is tempting to round it by choosing
assigned capacities according to p(B, C), and then solving the max-flow problem
in the resulting graph, hoping that the capacity of minimal cut will be close to
the expected one. Clearly, when we focus on one particular cut, say the one that
separates base-stations from clients, it will be true, but this does not necessarily
mean that for all cuts, such a promise will hold simultaneously. It may happen
that for the choice of assigned capacities that we obtain, it will always be the
case that for part of the clients the capacity of links leading to them in the
resulting graph will be much below the expectation, while for the other part
it will excessively large, and this excess will be wasted due to the bottlenecks
imposed by not large enough capacity of demand arcs for the respective clients.
Thus, even if on expectation each client has reasonable capacity of links leading
to it, the rounding procedure might not provide us with a particularly good

11

solution. Therefore, our analysis of the approximation guarantee given by this
LP would need to argue that with good probability all cuts are preserved up to
some ratio, and in fact, using Chernoff bounds, we can prove that this is indeed
true for the ratio O(log(m + n)/ log log(m + n)). Unfortunately, we can show,
through the following integrality gap example, that this unsatisfactorily large
ratio is not only a shortcoming of our particular rounding procedure, but in
fact, it is all that we can achieve through any rounding algorithm for this LP.

Integrality Gap Example. Let there be a single base-station B and m =
2r − 1 clients, where r is a parameter in the construction. The base-station
has an infinite (or very large) budget. The clients are grouped into log r + 1
groups Ci, i = 0 to log r, where Ci comprises r/2i clients. For each client in the
ith group, i.e. C ∈ Ci, the critical capacity η(B, C) is 2i and demand α(C) is
2i/ log r. A solution to the fractional program is the following:

p(B, C) =
2i

r log r
, ∀B ∈ B, ∀C ∈ Ci

f(B, C) =
2i − 1
log r

, ∀B ∈ B, ∀C ∈ Ci.

It can be verified that these assignment of values satisfy all the constraints in
the linear program. Then, the total satisfied demand is

log r∑

i=0

(
2i − 1
log r

) (r

2i

)
= Θ(r).

However, suppose we choose any particular threshold 2k in the optimal integral
solution. Then,

f(B,C) ≤

0, if j < k,
2j/ log r, if k ≤ j < k + log log r,
2k, otherwise.

This gives a total satisfied demand of

k+log log r−1∑

j=k

(
2j

log r

) (r

2j

)
+

j=log r∑

j=k+log log r

2k
(r

2j

)
= O(

r log log r

log r
) = O(

r log log m

log m
).

We thus obtain an Ω(log m/ log log m) integrality gap for this LP.

3.3 An Alternative Linear Program

In this section, we will describe a more sophisticated ILP which overcomes the
shortcomings of the previous ILP. Note that our goal is to choose assigned
capacities such that the augmentation graph has a large maximum flow, or
equivalently by Menger’s theorem, a large minimum cut. The previous FLP

12

ensures that each cut has large capacity in expectation and therefore the mini-
mum among the expected capacities of the cuts is large; this however does not
guarantee that the expected capacity of the minimum cut is large. We need this
stronger guarantee from our LP. To achieve this goal, we design an LP which
yields a family of flows corresponding to the different choices of assigned capac-
ities, and ensures that the expected value of these flows is large. This will imply
that the expected capacity of the minimum cut is large, and therefore provides
stronger guarantees than the previous LP. Precisely, we consider the following
ILP.

maximize
∑

B∈B
∑

C′,C∈C fC′(B, C) subject to

∑

C∈C
fC′(B, C) ≤ p(B, C ′)β(B), ∀B ∈ B, ∀C ′ ∈ C (7)

∑

B∈B

∑

C′∈C
fC′(B, C) ≤ α(C), ∀C ∈ C (8)

fC′(B, C) ≤
{

0, if η(B, C) < η(B, C ′)
p(B, C ′)min{η(B, C ′), α(C)}, otherwise

∀B ∈ B, ∀C,C ′ ∈ C (9)∑

C∈C
p(B, C) = 1, ∀B ∈ B (10)

p(B, C) ∈ {0, 1}, ∀B ∈ B, ∀C ∈ C (11)
fC′(B, C) ≥ 0, ∀B ∈ B, ∀C, C ′ ∈ C. (12)

Before moving on to the analysis of the algorithm, let us verify that the new
ILP does represent the original problem. To do this, let us fix some optimal
solution (τ∗, f∗) for the original problem. Consider now a solution to our ILP
defined as follows. For each base-station B we set p(B, C) = 1 if B chooses
η(C) as its assigned capacity i.e. if τ∗(B) = η(B, C); otherwise p(B, C) = 0.
Next, for each link (B,C), we set fC′(B, C) = f∗(B, C) if τ∗(B) = η(B,C ′),
and fC′(B, C) = 0 otherwise. Observe that all the constraints are preserved,
and the objective value corresponding to this solution has value equal to that
for the optimal solution. The converse direction is similar and we omit it for
brevity.

The key to understanding this ILP is the rounding technique that we employ
in our approximation algorithm; so let us describe our algorithm first. We relax
the integrality constraint , i.e. constraint (11) and allow the variables p to take
any value between 0 and 1, both inclusive. We solve the resulting FLP, and then
round the solution to obtain an integral solution. It is in this rounding procedure
that the crux of our algorithm lies. We choose assigned capacities according to
p(B, C), noting that for a fixed base-station B, p(B, C) is a valid probability dis-
tribution. Now, for any base-station B, if the assigned capacity τ(B) = η(B,C ′),
then for each link (B,C), we add a flow of gC′(B, C) ≡ fC′(B, C)/p(B, C ′) to
the s−B−C − t path in the augmentation graph. Crucially, this does not vio-
late the budget constraint at any base-station B since the total outflow at B is

13

∑
C∈C gC′(B,C), which is at most β(B) by constraint (7); neither does it violate

the capacity constraint on any link (B, C) since constraint (9) ensures that the
flow on link (B, C) is at most ψτ (B, C). Hence, we focus on analyzing violations
of the demand constraints. The total inflow at C is

∑
B∈B gC′(B)(B, C), where

C ′(B) is the client chosen by base-station B in the rounding. Unfortunately,
assigning these flow values simultaneously for all base-stations might lead to an
overflow in a demand arc (i.e., a demand constraint violation). For a client with
overflow, we decrease the incoming flows arbitrarily until the flow on the link
to t exactly matches its capacity (we call this the truncation step). Since such a
truncated flow is feasible, our ultimate goal is to prove that the truncation step
decreases the initial flow only by a constant fraction in expectation.

Let F (B,C) be the random variable denoting the flow on link (B,C); clearly,
F (B, C) = gC′(B, C) with probability p(B, C ′) and its expectation

E[F (B,C)] = f(B, C) ≡
∑

C′∈C
fC′(B, C) =

∑

C′∈C
p(B,C ′)gC′(B, C).

Constraint (8) states that the expected inflow
∑

B∈B f(B, C) at client C is at
most its demand α(C). Also, for a given C, the F (B,C) values are independent.
Finally, constraint (9) enforces that F (B,C) ≤ α(C) irrespective of the choice of
the assigned capacity at base-station B, (i.e. inflow due to a single base-station
at a client never exceeds the demand of the client). Thus, we ensure that there
is some cap on the wasted capacity, i.e. the capacity in the base-client links
that is left unused due to truncation; such a cap was absent in the previous
formulation and, as we will see, this additional condition will be sufficient for
our purpose.

Note. The rounding procedure can be simplified in an actual implemen-
tation. Once we obtain the assigned capacities of all the base-stations using
randomized rounding as described above, we can run a maximum flow algo-
rithm on the augmentation graph. Note that this achieves at least as much
(and potentially more) flow as that achieved by the rounding procedure de-
scribed above. So an actual implementation of our algorithm will rather employ
a maximum flow sub-routine than the above procedure for determining flows.
However, we assume that our algorithm uses the above procedure since it would
be simpler to analyze—all bounds proved using this assumption hold for an
actual implementation using maximum flow as well.

Analysis. If there are n base-stations and m clients, then the algorithm clearly
runs in time polynomial in N = max(n, m). So, we focus on proving guarantees
on the approximation factor of the algorithm. By the discussion in the previous
section, we know that in our rounding procedure the difference between the
objective value of the solution to the FLP and the actual flow that we obtain,
consists solely of the amount of initial flow that we have to truncate due to
overflows at clients. Thus our main task is to prove upper bounds on the ex-
pected overflow. Let F (C) ≡ ∑

B∈B F (B, C) be the random variable denoting
total inflow at C before truncation and T (C) ≡ min(F (C), α(C)) be the random

14

variable representing the inflow at C after truncation. We would like to show
that

E[T (C)] ≥ (1− 1/e)E[F (C)]. (13)

Then,
E[

∑

C∈C
T (C)] ≥ (1− 1/e)E[

∑

C∈C
F (C)] ≥ (1− 1/e)T ∗, (14)

where T ∗ is the total flow in an optimal integral solution. This proves Theo-
rem 2, which was stated in Section 1.

To establish inequality (13), we will need the following theorem (a similar
proof appears in [1]).

Theorem 4. Suppose we have a sequence of independent discrete random vari-
ables X1, X2, . . . , Xn such that each Xi has finite support and 0 ≤ Xi ≤ 1.
Furthermore, suppose X =

∑n
i=1 Xi and E[X] ≤ 1. If Y = min(X, 1), then

E[Y] ≥ (1− 1/e)E[X].

We first use this theorem to prove inequality (13), and then give a proof
of the theorem itself. If, for client C, we define Xi = F (Bi, C)/α(C) (where
B = {B1, . . . , Bn}) and Y = T (C)/α(C), then such Xis and Y satisfy the
assumptions of the theorem. Thus, we can conclude that

E[T (C)] = α(C)E[Y] ≥ (1− 1/e)α(C)E[X] = (1− 1/e)E[F (C)].

Proof of Theorem 4. Our proof has the following outline. We assume for the
sake of contradiction that there exists a sequence {X̂1, X̂2, . . . , X̂n} of discrete
random variables such that

E[Ŷ] = E[min(
∑

i

X̂i, 1)] < (1− 1/e)E[X̂] = (1− 1/e)E[
∑

i

X̂i].

We call such a sequence (X̂i) a nemesis sequence. First, we prove that we can
assume without loss of generality, that X̂is are 0-1 random variables. Then, we
prove our theorem for 0-1 random variables, thus arriving at a contradiction for
the general case.

Let S(X̂i) be the number of distinct values other than 0 and 1 for which
X̂i has non-zero probability. Now, let us consider a nemesis sequence (X̂i) that
minimizes

∑
i S(X̂i). We will prove that if

∑
i S(X̂i) > 0 then there exists

another nemesis sequence (X̃i) with
∑

i S(X̃i) <
∑

i S(X̂i). The minimality of
(X̂i) implies there exists a nemesis sequence with

∑
i S(X̂i) = 0, i.e. (X̂i) is a

sequence of 0-1 variables.
If

∑
i S(X̂i) > 0, then there exists some k such that S(X̂k) > 0, which in

turn means that there exists some 0 < a < 1 such that Pr[X̂k = a] = p > 0.
Suppose that this X̂k takes value of 0 and 1 with probability q ≥ 0 and r ≥ 0
respectively (note that p, q and r do not necessarily sum to 1). Now, consider
another random variable X̃k that is distributed identically to X̂k except that the

15

probabilities of a, 0 and 1 are changed to 0, q +(1−a)p and r +ap respectively.
Note that E[X̃k] = E[X̂k], 0 ≤ X̃k ≤ 1 and S(X̃k) = S(X̂k)− 1. So, if we define
X̃i = X̂i for i 6= k, then E[X̂] = E[X̃] ≤ 1. We would like to compare E[Ŷ] to
E[Ỹ] ≡ E[min{X̃, 1}]. Note that by our definition, for any δ ≥ 0,

Pr[X̃ − X̃k = δ] = Pr[X̂ − X̂k = δ].

Thus, to prove that E[Ỹ] ≤ E[Ŷ], it is sufficient to prove that

E[Ỹ |X̃ − X̃k = δ] ≤ E[Ŷ |X̂ − X̂k = δ],

for all δ ≥ 0.
Clearly, if δ ≥ 1 then

E[Ỹ |X̃ − X̃k = δ] = 1 = E[Ŷ |X̂ − X̂k = δ];

so the inequality holds. On the other hand, for δ < 1,

E[Ỹ |X̃ − X̃k = δ]− E[Ŷ |X̂ − X̂k = δ] = E[min{X̃k, 1− δ}]− E[min{X̂k, 1− δ}]
= ap(1− δ)− p min{a, 1− δ} ≤ 0.

Thus, E[Ỹ] ≤ E[Ŷ], which proves that {X̂i} had to be a zero-one nemesis
sequence by minimality of

∑
i S(X̂i).

Now, when {X̂i} is zero-one,

E[Ŷ] = Pr[X̂ ≥ 1]

= 1−
∏

i

(1− Pr[X̂i = 1])

≥ 1− (1−
∑

i

E[X̂i]/n)n

≥ 1− e−E[X̂]

≥ (1− 1/e)E[X̂],

as desired, where in the first inequality we used the fact that
∑

i

Pr[X̂i = 1] =
∑

i

E[X̂i] = E[X̂],

and the arithmetic/geometric mean inequality; and the last inequality follows
from Taylor expansion using the fact that E[X̂] ≤ 1.

Observe that this theorem is tight for n i.i.d. 0-1 random variables Xi with
Pr[Xi = 1] = 1/n. Further, since it holds any set of discrete random variables,
it can be extended to continuous random variables as well using compactness.

16

4 Conclusion and Open Problems

The ability to adaptively change channel widths in wireless networks introduces
interesting algorithmic problems. In this paper, we studied a throughput maxi-
mization problem in infrastructure wireless networks that was equivalent to the
maximum flow problem in bipartite graphs with adaptive channel width. We
gave an LP-rounding based algorithm for this problem that has an approxima-
tion ratio of e/(e−1); independent of our work, Chandra Chekuri has suggested
that the same result also follows from a submodularity-based analysis. A nat-
ural and interesting generalization of this question is maximizing throughput
(i.e. flow) in a general (i.e. possibly non-bipartite) graph with adaptive chan-
nel width. Another important problem in wireless networks is scheduling, which
often translates to coloring problems. It would be interesting to explore the ram-
ifications of adaptively changing channel widths on graph coloring problems. As
a first step, we might want to understand the implications of adaptively chang-
ing capacities on the matching problem, since the matching constraint can be
interpreted as a particularly simple edge coloring constraint. Finally, we note
that bi-criteria (or multi-criteria) graph optimization problems have not been
studied extensively (at least compared to their single criterion variants), often
because it turns out that the minimum cost network satisfying multiple criteria
is essentially a juxtaposition of individual networks that are optimal from the
point of view of one of the criteria. However, the ability to adaptively change
channel widths might make it possible to design a single network that is op-
timal from the point of view of any of the given criteria as long as we choose
a corresponding optimal threshold settings. Thus, bi-criteria (or multi-criteria)
optimization problems in such networks might be substantially different in their
combinatorial structure from their counterparts in fixed-capacity networks.

5 Acknowledgements

We are grateful to Chandra Chekuri for suggesting an alternative approach for
our problem based on submodular functions. We also thank the anonymous
referees for helpful comments.

References

[1] N. Andelman and Y. Mansour. Auctions with budget constraints. In 9th
Scandinavian Workshop on Algorithm Theory, pages 26–38, 2004.

[2] Y. Azar, L. Epstein, Y. Richter and G. J. Woeginger, All-norm approxi-
mation algorithms. In J. Algorithms, 52(2):120-133, 2004.

[3] Y. Azar and O. Regev. Combinatorial algorithms for the unsplittable flow
problem. Algorithmica, 44(1):49–66, 2006.

17

[4] A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation
algorithms for the unsplittable flow problem. Algorithmica, 47(1):53–78,
2007.

[5] R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and P. Bahl. A
case for adapting channel width in wireless networks. In SIGCOMM, pages
135–146, 2008.

[6] C. Chekuri, S. Khanna, and F. B. Shepherd. An O(sqrt(n)) approximation
and integrality gap for disjoint paths and unsplittable flow. Theory of
Computing, 2(1):137–146, 2006.

[7] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a
network with power estimation. Soviet Math. Doklady (Doklady), 11:1277–
1280, 1970.

[8] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM, 19(2):248–264,
1972.

[9] S. Even and R. E. Tarjan. Network flow and testing graph connectivity.
SIAM J. Comput., 4(4):507—518, 1975.

[10] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8:399–404, 1956.

[11] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J.
ACM, 45(5):783—797, 1998.

[12] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow
problem. J. ACM, 35(4):921—940, 1988.

[13] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, and M. Yan-
nakakis. Near-optimal hardness results and approximation algorithms for
edge-disjoint paths and related problems. J. Comput. Syst. Sci., 67(3):473–
496, 2003.

[14] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings
in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[15] D. R. Karger. Using random sampling to find maximum flows in uncapac-
itated undirected graphs. In STOC, pages 240—249, 1997.

[16] D. R. Karger. Better random sampling algorithms for flows in undirected
graphs. In SODA, pages 490–499, 1998.

[17] D. R. Karger and M. S. Levine. Finding maximum flows in undirected
graphs seems easier than bipartite matching. In STOC, pages 69—78,
1998.

18

[18] D. R. Karger and M. S. Levine. Random sampling in residual graphs. In
STOC, pages 63–66, 2002.

[19] J. M. Kleinberg. Single-source unsplittable flow. In FOCS, pages 68–77,
1996.

[20] J. K. Lenstra and D. B. Shmoys and É. Tardos. Approximation Algorithms
for Scheduling Unrelated Parallel Machines. In Math. Program., 46:256–
271, 1990.

[21] T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, P. Bahl, and Y. Yuan.
Load-Aware Spectrum Distribution in Wireless LANs. In ICNP, 2008.

[22] E. Petrank. The Hardness of Approximation: Gap Location. In Computa-
tional Complexity, 4:133-157, 1994.

[23] C. E. Shannon. Communication in the presence of noise. Proc. Institute of
Radio Engineers, 37(1):1021, 1949.

[24] A. Srinivasan. Improved approximations for edge-disjoint paths, unsplit-
table flow, and related routing problems. In FOCS, pages 416–425, 1997.

19

