
A Polylogarithmic-Competitive Algorithm for the
k-Server Problem

Nikhil Bansal ∗ Niv Buchbinder † Aleksander Mądry ‡ Joseph (Seffi) Naor §

Abstract

We give the first polylogarithmic-competitive randomized online algorithm for the k-server
problem on an arbitrary finite metric space. In particular, our algorithm achieves a competitive
ratio of Õ(log3 n log2 k) for any metric space on n points. Our algorithm improves upon the
deterministic (2k − 1)-competitive algorithm of Koutsoupias and Papadimitriou [23] whenever
n is sub-exponential in k.

1 Introduction

The k-server problem is one of the most fundamental and extensively studied problems in online
computation. Suppose there is an n-point metric space and k servers are located at some of the
points of the metric space. At each time step, an online algorithm is given a request at one of the
points of the metric space, and this request is served by moving a server to the requested point (if
there is no server there already). The cost of serving a request is defined to be the distance traveled
by the server. Given a sequence of requests, the task is to devise an online strategy minimizing the
sum of the costs of serving the requests.

The k-server problem was originally proposed by Manasse et al. [24] as a broad generalization of
various online problems. The most well studied problem among them is the paging (also known as
caching) problem, in which there is a cache that can hold up to k pages out of a universe of n pages.
At each time step a page is requested; if the page is already in the cache then no cost is incurred,
otherwise it must be brought into the cache (possibly causing an eviction of some other page) at
a cost of one unit. It is easy to see that the paging problem is equivalent to the k-server problem
on a uniform metric space, and already in their seminal paper on competitive analysis, Sleator
and Tarjan [27] gave several k-competitive algorithms for paging, and showed that no deterministic
algorithm can do better. This prompted Manasse et al. [24] to state a far-reaching conjecture that
a similar result holds for an arbitrary metric. More precisely, they conjectured that there is a
k-competitive online algorithm for the k-server problem on any metric space and for any value of
k. This conjecture is known as as the k-server conjecture.
∗Technical University of Eindhoven, Netherlands. E-mail: n.bansal@tue.nl.
†Computer Science Department, Open University of Israel. E-mail: niv.buchbinder@gmail.com. Supported by

ISF grant 954/11 and BSF grant 2010426.
‡Microsoft Research, Cambridge, MA USA. E-mail: madry@mit.edu. Research done while at the Computer

Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA USA, and partially supported by NSF grant
CCF-0829878 and by ONR grant N00014-11-1-0053.
§Computer Science Department, Technion, Haifa, Israel. E-mail: naor@cs.technion.ac.il. Supported by ISF grant

954/11 and BSF grant 2010426.

1

At the time that the k-server conjecture was stated, an online algorithm with competitive
ratio that depends only on k was not known. It was first obtained by Fiat et al. [19]. Improved
bounds were obtained later on by [22, 9], though the ratio still remained exponential in k. A major
breakthrough was achieved by Koutsoupias and Papadimitriou [23], who showed that so-called work
function algorithm is (2k − 1)-competitive. This result is almost optimal, since we know that any
deterministic algorithm has to be at least k-competitive. We note that a tight competitive factor
of k is only known for special metrics such as the uniform metric, line metric, and – more generally
– trees [14, 15].

Even though the aforementioned results are all deterministic, there is also a great deal of interest
in randomized algorithms for the k-server problem. This is motivated primarily by the fact that
randomized online algorithms (i.e., algorithms working against an oblivious adversary) tend to
have much better performance than their deterministic counterparts. For example, for the paging
problem, several O(log k)-competitive algorithms are known [20, 25, 1, 2], as well as a lower bound
of Ω(log k) on the competitive ratio.

Unfortunately, our understanding of the k-server problem when randomization is allowed is
much weaker than in the deterministic case. Despite much work [12, 8, 10], no better lower bound
than Ω(log k) is known on competitive factors in the randomized setting. Conversely, no better
upper bound, other than the deterministic guarantee of 2k − 1 [23] mentioned above, is known
for general metrics. Thus, an exponential gap still remains between the known lower and upper
bounds.

Given the lack of any lower bounds better than Ω(log k), it is widely believed that there is an
O(log k)-competitive randomized algorithm for the k-server problem on every metric space against
an oblivious adversary - this belief is captured by the so-called randomized k-server conjecture.
Unfortunately, besides the previously-mentioned O(log k)-competitive algorithm for the case of a
uniform metric, even when we allow the competitiveness to depend on other parameters of the
metric, such as the number of points n, or the diameter ∆, non-trivial guarantees are known only
for very few special cases. For example, the case of a well-separated metric [26], the case of a metric
corresponding to a binary HST with high separation [16], the case of n = k + O(1) [7], as well as
some other cases [17, 3, 4]. For the weighted paging problem1, [2] gave an O(log k)-competitive
algorithm (see also [3]) which is based on the online primal-dual approach. However, no non-trivial
guarantees are known even for very simple extensions of the uniform metric, e.g., two-level HSTs
with high separation.

For a more in-depth treatment of the extensive literature on both paging and the k-server
problem, we suggest [13].

1.1 Our Result

We give the first polylogarithmic competitive algorithm for the k-server problem on a general metric
with a finite number of points n. More precisely, our main result is the following.

Theorem 1. There is a randomized algorithm for the k-server problem that achieves a competitive
ratio of O(log2 k log3 n log logn) = Õ(log2 k log3 n) on any metric space on n points.

The starting point of our algorithm is the recent approach proposed by Coté et al. [16] for
solving the k-server problem on hierarchically well-separated trees (HSTs). It is well known that
1In weighted paging, arbitrary weights are associated with fetching the pages into the cache. This problem

corresponds to the k-server problem on a weighted star.

2

solving the problem on HSTs suffices, as any metric space can be embedded into a probability
distribution over HSTs with low distortion [18].

More precisely, Coté et al. defined a problem on uniform metrics which we call the allocation
problem. They showed that an online randomized algorithm for the allocation problem that provides
certain refined competitive guarantees can be used as a building block to recursively solve the k-
server problem on an HST, provided the HST is sufficiently well-separated. Roughly speaking, in
their construction, each internal node of the HST runs an instance of the allocation problem that
determines how to distribute the available servers among its children nodes. Starting from the
root, which has k servers, the recursive calls to the allocation problem determine the number of
servers at each leaf of the HST, giving a valid k-server solution. The guarantee of this k-server
solution depends on both the guarantees for the allocation problem, as well as the depth of the
HST (i.e., the number of levels of recursion). The guarantees obtained by Coté et al. [16] for the
allocation problem on a metric space with two points allowed them to obtain an algorithm for the
k-server problem on a sufficiently well-separated binary HST having a competitive ratio that is
polylogarithmic in k, n, and the diameter ∆ of the underlying metric space. Unfortunately, the
fact that the HST has to be binary as well as have a sufficiently good separation severely restricts
the metric spaces to which this algorithm can be applied.

Given the result of Coté et al. [16], a natural approach to establishing our result is coming
up with a randomized algorithm having the required refined guarantees for the allocation problem
on an arbitrary number of points. However, it is unclear to us how to obtain such an algorithm.
Instead, we pursue a more refined approach to solving the k-server problem via the allocation
problem. By doing so we are able to bypass the need for a “true” randomized algorithm for the
allocation problem and are able to work with a (much) weaker formulation. More precisely, our
result consists of three main parts.

1. We show that instead of obtaining a randomized algorithm for the allocation problem, it suf-
fices to obtain an algorithm for a certain fractional relaxation of it. Employing this relaxation
makes the task of designing such a fractional allocation algorithm easier than designing the
version of the allocation problem that was considered earlier. Next, building upon the argu-
ments in Coté et al. [16], we show that a sufficiently good online algorithm for this fractional
allocation problem can be used as a building block to obtain a good fractional solution to
the k-server problem on an HST. Finally, by proving that such a fractional k-server solution
can be rounded in an online randomized manner, while losing only an O(1) factor in the
competitive ratio, we get a reduction of the k-server problem to our version of the fractional
allocation problem.

An interesting feature of this reduction is that our fractional relaxation is too weak to give
anything better than an O(k) guarantee for the (integral) allocation problem, since there are
instances on which any integral solution must pay Ω(k) times the fractional cost. Therefore,
it is somewhat surprising that even though our relaxation is unable to provide any reasonable
algorithm for the (integral) allocation problem, it suffices to give a good guarantee for the
(integral) k-server problem.

2. As the next step, we design an online algorithm for the fractional allocation problem with the
refined guarantees required in the above reduction. Our techniques here are inspired by the
ideas developed recently in the context of the caching with costs problem [3] and weighted
paging [2]. However, while these previous algorithms were designed and described using the

3

online primal-dual framework, our algorithm is combinatorial. To analyze the performance
we employ a novel potential function approach.

By plugging the algorithm for the fractional allocation problem into the above reduction, we
get a (roughly) O(` log(k`))-competitive algorithm for the k-server problem on an HST of
depth `, provided that the HST is sufficiently well-separated.

3. Finally, we note that the competitive guarantee provided by the above k-server algorithm
depends on the depth ` of the HST we are working with and, as ` can be Ω(log ∆), this
guarantee can be polylogarithmic in ∆. Therefore, as ∆ can be 2Ω(n), this would lead to
competitiveness that is even polynomial in n.2 To deal with this issue, we define a weighted
version of an HST in which the edge lengths on any root-to-leaf path still decrease at (at
least) an exponential rate, but the lengths of the edges from a given node to its children could
be non-uniform. We prove that any HST can be transformed to a weighted HST of depth
` = O(log n) while incurring only an O(1) distortion in leaf-to-leaf distances. We then show
that our previous ideas can be applied to weighted HSTs as well. In particular, our online
fractional allocation algorithm is actually developed for a weighted star metric (instead of a
uniform one), and, as we show, it can be employed in our reduction to obtain a fractional k-
server algorithm on a weighted HST. The fractional k-server algorithm can again be rounded
to a randomized algorithm with only an O(1) factor loss. Since ` is now O(log n) and thus
does not depend on ∆, it gives us an overall guarantee which is polylogarithmic only in n and
k.

In Section 2 we describe the above ideas more formally and also give an overview of the paper.

1.2 Preliminaries

We provide definitions and concepts that will be needed in the paper.

Hierarchically well-separated trees. Hierarchical well-separated trees (HST-s), introduced
by Bartal [5, 6], is a metric embedding technique in which a general metric is embedded into a
probability distribution defined over a set of structured trees (the HST-s). The points of the metric
are mapped onto the leaves of the HST, while internal tree nodes represent clusters. The distances
along a root-leaf path form a geometric sequence, and this factor is called the stretch of the HST.
An HST with stretch σ is called a σ-HST. The embedding guarantees that the distance between
any pair of vertices in the metric can only increase in an HST, and the expected blowup of each
distance, known as the distortion, is bounded. It is well known that any metric on n points can
be embedded into a distribution over σ-HSTs with distortion O(σ logσ n) [18]. This approach of
embedding into HSTs is particularly useful for problems (both offline and online) which seem hard
on a general metric, but can be solved fairly easily on trees (or HSTs).

Due to the special structure of HSTs, the task of solving problems on them can sometimes be
reduced to the task of solving a more general (and thus harder) problem, but on a uniform metric.
For example, this approach was used to obtain the first polylogarithmic guarantees for the metrical
task systems problem (MTS) by [7] (later further refined by [21]). More precisely, Blum et al. [7]
defined a refined version of MTS on a uniform metric known as unfair-MTS and showed how an
2To see an example when this is the case, one could consider a metric space corresponding to n points on a line

that are spaced at geometrically increasing distances.

4

algorithm with a certain refined guarantee for it can be used recursively to obtain an algorithm for
MTS on an HST. This approach is especially appealing in the context of the k-server problem, as
this problem on a uniform metric (i.e. paging) is well- understood. This motivated Coté et al. [16]
to define a problem on a uniform metric, that we call the allocation problem, and show how a good
algorithm for it can be used to design good k-server algorithms on HSTs. This problem is defined
as follows.

The allocation problem. Suppose that a metric on d points is defined by a weighted star in
which the distance from the center to each point i, 1 ≤ i ≤ d, is wi.3 At time step t, the total
number of available servers, κ(t) ≤ k, is specified, and we call the vector κ = (κ(1), κ(2), . . .) the
quota pattern. A request arrives at a point it and it is specified by a (k + 1)-dimensional vector
~ht = (ht(0), ht(1), . . . , ht(k)), where ht(j) denotes the cost of serving the request using j servers.
The cost vectors at any time are guaranteed to satisfy the following monotonicity property: for
any 0 ≤ j ≤ k − 1, the costs satisfy ht(j) ≥ ht(j + 1). That is, serving a request with more servers
cannot increase the cost. Upon receiving a request, the algorithm may choose to move additional
servers from other locations to the requested point and then serve it. The cost is divided into two
parts. The movement cost incurred for moving the servers, and the hit cost determined by the cost
vector and the number of servers at location it.

In this paper, we will be interested in designing algorithms for (a fractional version of) this
problem that provide a certain refined competitive guarantee. Namely, we say that an online
algorithm for the allocation problem is (θ, γ)-competitive if it incurs:

• a hit cost of at most θ · (Optcost + ∆ · g(κ));

• a movement cost of at most γ · (Optcost + ∆ · g(κ)),

where Optcost is the total cost (i.e., hit cost plus movement cost) of an optimal solution to a given
instance of the allocation problem, g(κ) :=

∑
t |κ(t) − κ(t − 1)| is the total variation of the server

quota pattern, and ∆ is the diameter of the underlying metric space.

From allocation to k-server. Coté et al. [16] showed that a (1 + ε, β)-competitive online algo-
rithm for the allocation problem on d points – provided ε is small enough and β = Oε(polylog(d, k))
– can be used to obtain a polylogarithmic competitive algorithm for the k-server problem on general
metrics. In particular, the next theorem follows from their work and is stated explicitly in [3].

Theorem 2. Suppose there is a (1 + ε, β)-competitive algorithm for the allocation problem on a
uniform metric on d points. Let H be an σ-HST with depth `. Then, for any ε ≤ 1, there is an
O(βγ`+1/(γ − 1))-competitive algorithm for the k-server problem on H, where

γ = (1 + ε)

(
1 +

3

σ

)
+O

(
β

σ

)
.

Setting ε = 1/`, this gives an O(β`)-competitive algorithm on σ-HSTs, provided the HST separation
parameter σ is at least β`.
3Even though Coté et al. [16] considered the allocation problem on a uniform metric, we find it useful to work

with the more general weighted-star metric version of this problem.

5

At a high level, the k-server algorithm in Theorem 2 is obtained as follows. Each internal
node p in the HST runs an instance of the allocation problem on the uniform metric formed by its
children. In this instance, the cost vectors appearing at a child i are guided by the evolution of
the cost of the optimal solution to the instance of the k-server problem restricted to the leaves of
the subtree that is rooted at i. Furthermore, the quota patterns for each of the allocation problem
instances is determined recursively. The root of the tree has a fixed server quota of k, and the quota
corresponding to a non-root node i is specified by the number of servers that are allocated to i by
the instance of the allocation problem run at the parent of i. The distribution of the servers on the
leaves of the tree is determined in this manner, thus leading to a solution to the k-server problem.
The overall guarantee in Theorem 2 follows roughly by showing that the hit cost guarantee of (1+ε)
multiplies at each level of the recursion, while the movement cost guarantee of β adds up.

Weighted HSTs. Note that the guarantee in Theorem 2 depends on `, the depth of the σ-HST,
which in general is Θ(logσ ∆). To avoid the resulting dependence on the diameter ∆ that can be as
large as 2Ω(n), we introduce the notion of a weighted σ-HST. A weighted σ-HST is a tree having the
property that for any node p, which is not the root or a leaf, the distance from p to its parent is at
least σ times the distance from p to any of its children. Thus, unlike an HST, distances from p to
its children can be non-uniform. The crucial property of weighted HSTs that we will show later is
that any σ-HST T with O(n) nodes can be embedded into a weighted σ-HST with depth O(log n),
such that the distance between any pair of leaves of T is distorted by a factor of at most 2σ/(σ−1)
(which is O(1) if, say, σ ≥ 2). Reducing the depth from O(log ∆) to O(log n) allows us to replace
the factor of log ∆ by log n in the bound on the competitive factor we get for the k-server problem.

Fractional view of randomized algorithms. The relation between randomized algorithms
and their corresponding fractional views is an important theme in our paper. By definition, a
randomized algorithm is completely specified by the probability distribution over the configura-
tions (deterministic states) at each time step of the algorithm. However, working explicitly with
such distributions is usually very cumbersome and complex, and it is often simpler to work with
a fractional view of it. In a fractional view, the algorithm only keeps track of the marginal dis-
tributions on certain quantities, and specifies how these marginals evolve with time. Note that
there are multiple ways to define a fractional view (depending on which marginals are tracked).
For example, for the k-server problem on an HST, the fractional view might simply correspond to
specifying the probability pi of having a server at leaf i (instead of specifying the entire distribution
on the k-tuples of possible server locations). Clearly, the fractional view is a lossy representation of
the actual randomized algorithm. However, in many cases (though not always), a fractional view
can be converted back to a randomized algorithm with only a small loss. We now describe the
fractional views we employ for the two main problems considered in this paper.

Fractional view of the k-server problem on an HST. Let T be a σ-HST. For a node j ∈ T ,
let T (j) be the set of leaves in the subtree rooted at j. In the fractional view, at each time step t,
the probability of having a server at leaf i, denoted by pti, is specified. Upon getting a request at
leaf i at time t, a fractional algorithm must ensure that pti = 1. Let the expected number of servers
at time t at leaves of T (j) be denoted by kt(j) =

∑
i∈T (j) p

t
i. Clearly, the movement cost incurred

at time t is
∑

j∈T W (j)|kt(j)− kt−1(j)|, where W (j) is the distance from j to its parent in T .

6

It is easy to verify that the cost incurred by any randomized algorithm is at least as large as
the cost incurred by its induced fractional view. Conversely, it turns out that the fractional view is
not too lossy for a σ-HST (provided σ > 5). In particular, in Section 5.2 we show that for a σ-HST
(σ > 5), an online algorithm for the k-server problem in the fractional view above can be converted
into an online randomized algorithm, while losing only an O(1) factor in the competitive ratio.

The fractional allocation problem. For the allocation problem we consider the following frac-
tional view. For each location i ∈ [d], and all possible number of servers j ∈ {0, . . . , k}, there is a
variable xti,j denoting the probability of having exactly j servers at location i at time t. For each
time t, the variables xti,j must satisfy the following constraints.

1. For each location i, the variables xti,j specify a probability distribution, i.e.,
∑

j x
t
i,j = 1 and

each xti,j is non-negative.

2. The number of servers used is at most κ(t), the number of available servers. That is,∑
i

∑
j

j · xti,j ≤ κ(t).

At time step t, when cost vector ht arrives at location it, and possibly κ(t) changes, the algorithm
can change its distribution from xt−1 to xt incurring a hit cost of

∑
j h

t(j)xtit,j . The movement
cost incurred is defined to be

∑
i

wi

k∑
j=1

∣∣∣∣∣∣
∑
j′<j

xti,j′ −
∑
j′<j

xt−1
i,j′

∣∣∣∣∣∣ . (1)

Remark: Note that when our configurations are integral, this quantity is exactly the cost of
moving the servers from configuration xt−1 to configuration xt. In the fractional case, each term
in the outermost sum can be seen as equal to the earthmover distance between the probability
vectors (xt−1

i,0 , . . . , x
t−1
i,k) and (xti,0, . . . , x

t
i,k) with respect to a linear metric defined on {0, 1, . . . , k}.

The earthmover distance is the optimal solution to a transportation problem in which xt−1 is the
supply vector, xt is the demand vector, and the cost of sending one unit of flow between xt−1

i,j and
xti,j′ is wi · |j − j′|, since |j − j′| is the change in number of servers resulting from sending this
unit of flow. It is not hard to see4 that in the case of a linear metric, the optimal solution to the
transportation problem (up to a factor of 2) is captured by (1).

A gap instance for the fractional allocation problem. As mentioned earlier, unlike the
fractional view of the k-server problem presented above, the fractional view of the allocation problem
turns out to be too weak to yield a randomized algorithm for its integral counterpart. We thus
present an instance of the allocation problem for which the ratio between the cost of any integral
solution and the cost of an optimal fractional solution is Ω(k). However, we stress that even though
the fractional view fails to approximate the integral allocation problem, we are still able to use it
to design a fractional (and, in turn, integral) solution to the k-server problem. In particular, we

4Using uncrossing arguments on the optimal transportation solution.

7

show in Section 4 that Theorem 2 holds even when we substitute the randomized algorithm for the
allocation problem with the fractional algorithm.

Let us consider a uniform metric space over d = 2 points, and consider an instance of the
allocation problem in which exactly κ(t) = k servers are available at each time. Furthermore, at
each odd time step 1, 3, 5, . . ., the cost vector h = (1, 1, ..., 1, 0) arrives at location 1, and at each
even time step 2, 4, 6, . . ., the vector h′ = (1, 0, 0, ..., 0) arrives at location 2.

We show that any integral solution to this instance of the allocation problem must incur a high
cost, while there is an Ω(k) times cheaper solution in the fractional view.

Claim 3. Any solution to the instance above incurs a cost of Ω(T) over T time steps.

Proof. Observe that the hit cost can be avoided at location 1 only if it contains k servers, and it
can be avoided at location 2 only if it contains at least one server. Thus, any algorithm that does
not pay a hit cost of at least 1 during any two consecutive time steps, must move at least one
server between locations 1 and 2, incurring a movement cost of at least 1, concluding that the cost
is Ω(T).

Claim 4. There is a solution in the fractional view of cost O(T/k) over T time steps.

Proof. Consider the following solution in the fractional view. At each time step t, let:

xt1,0 =
1

k
, xt1,k = 1− 1

k
, and xt2,1 = 1.

Note that this solution satisfies all the constraints in the fractional view. Since location 2 always has
a server, it never pays any hit cost. Moreover, location 1 has fewer than k servers with probability
1/k, it thus incurs only a hit cost 1 · x1,0 = 1/k at every odd time step. Also, as the solution does
not change over time, the movement cost is 0.

2 Overview of Our Approach

In this section we give a formal description of our results, outline how they are organized, and
discuss how they fit together so as to obtain our main result.

Fractional allocation algorithm. In Section 3 we consider the fractional allocation problem
on a weighted star, and prove the following theorem.

Theorem 5. For any ε > 0, there exists a fractional (1 + ε,O(log(k/ε)))-competitive allocation
algorithm on a weighted star metric.

From allocation to k-server problem. In Section 4 we show how the algorithm from Theorem
5 can be used to obtain a fractional k-server algorithm on a sufficiently well-separated weighted
HST. In particular, we show that:

Theorem 6. Let T be a weighted σ-HST of depth `. If, for any 0 ≤ ε ≤ 1, there exists a
(1+ε, log(k/ε))-competitive algorithm for the fractional allocation problem on a weighted star, then
there is an O(` log(k`))-competitive algorithm for the fractional k-server problem on T , provided
σ = Ω(` log(k`)).

8

Putting it all together. We now show how to use Theorems 5 and 6 to prove our k-server
guarantee for general metrics, i.e., to prove Theorem 1.

To this end, we need two more results that we prove in Section 5. First,

Theorem 7. Let T be a σ-HST with σ > 5. Then any online fractional k-server algorithm on
T can be converted into a randomized k-server algorithm on T with an O(1) factor loss in the
competitive ratio.

Note that the above result gives a rounding procedure only for HSTs (and not weighted HSTs).
To relate HSTs to weighted HSTs, we show the following.

Theorem 8. Let T be a σ-HST with n leaves, but possibly arbitrary depth. Then T can be trans-
formed into a weighted σ-HST T̃ such that: T̃ has depth O(log n), the leaves of T̃ and T are
identical, and any leaf to leaf distance in T is distorted by a factor of at most 2σ/(σ − 1) in T̃ .

Given the above results, we can present the proof of our main theorem.

Proof of Theorem 1. Our algorithm proceeds as follows. First, we use the standard technique
[18] to embed the input (arbitrary) metric M into a distribution µ over σ-HSTs with stretch
σ = Θ(log n log(k log n)). This incurs a distortion of O(σ logσ n) and the resulting HSTs have
depth O(logσ ∆), where ∆ is the diameter of M .

Next, we pick a random HST T according to the distribution µ, and transform T into T̃ using
Theorem 8. As T̃ has depth ` = O(log n), it holds that σ = Θ(` log(k`)) and hence applying
Theorem 6 to T̃ gives an O(` log(k`)) = O(log n log(k log n))-competitive fractional k-server algo-
rithm on T̃ . Since the leaves of T and T̃ are identical, and the distances only have O(1) distortion,
the fractional k-server solution on T̃ induces an O(log n log(k log n))-competitive fractional k-server
solution on T . By Theorem 7, this gives an O(log n log(k log n))-competitive randomized k-server
algorithm on T .

We now relate the optimum k-server cost on M to the optimum on T . Let Opt∗M denote the
optimum k-server solution on M , and let cT denote the cost of this solution on T . Since the
expected distortion of distances in our ensemble of HSTs is small, we have:

Eµ[cT] = O(σ logσ n) ·Opt∗M . (2)

Let AlgT denote the cost of the solution produced by the online algorithm on T , and let AlgM
denote the cost of this solution on the metric M . As the pairwise distances in T are at least the
distances in M , AlgM ≤ AlgT . Also, as AlgT is O(log n log(k log n))-competitive, it follows that:

AlgM ≤ AlgT = O(log n log(k log n)) · c∗T ≤ O(log n log(k log n)) · cT

where c∗T is the optimum k-server cost on T (and hence c∗T ≤ cT). Taking expectation with respect
to µ above and using (2), the expected cost of our solution Eµ[AlgM] satisfies:

Eµ[AlgM] = O(log n log(k log n)) · Eµ[cT] = O(σ logσ n) ·O(log n log(k log n)) ·Opt∗M ,

which implies that the overall algorithm has a competitive ratio of

O

(
σ

(
log n

log σ

))
·O (log n log(k log n)) = O

(
log3 n(log(k log n))2

log logn

)
= O

(
log2 k log3 n log log n

)
.

9

3 The Fractional Allocation Problem

Consider a metric corresponding to a weighted star on d leaves (also called locations) 1, . . . , d, where
wi is the distance from leaf i to the root. Let us fix a sequence of cost vectors h0, h1, . . . and a
server quota pattern κ = (κ(1), κ(2), . . .), where κ(t) is the number of servers available at time t,
and κ(t) ≤ k for all times t.

Recall that in the fractional allocation problem the state at each time t is described by non-
negative variables xti,j denoting the probability that there are exactly j servers at location i. At
each time t, the variables xti,j satisfy: (1)

∑
j x

t
i,j = 1, for each i; (2)

∑
i

∑
j jx

t
i,j ≤ κ(t).

As we shall see, when describing and analyzing our algorithm for the fractional allocation
problem, it will be easier to work with variables yti,j , defined as

yti,j =

j−1∑
j′=0

xti,j′ , for i ∈ {1, . . . , d}, j ∈ {1, 2, . . . , k + 1}.

I.e., yti,j is the probability that at time t we have less than j servers at location i. Clearly, for every
i, as long as:

yti,j ∈ [0, 1] (3)

yti,j−1 ≤ yti,j , yi,k+1 = 1, ∀i ∈ {1, . . . , d}, j ∈ {2, . . . , k + 1}, (4)

there is always a unique setting of the variables xti,js that corresponds to the yti,js. Therefore, in
what follows we make sure that the variables yti,js generated by our algorithm satisfy the above two
conditions.

The condition that at most κ(t) servers are available at each time t can be expressed in terms
of yti,j as:

d∑
i=1

k∑
j=1

yti,j =

d∑
i=1

k∑
j=0

(k − j)xti,j = k
d∑
i=1

k∑
j=0

xti,j −
d∑
i=1

k∑
j=0

jxti,j

= kd−

 d∑
i=1

k∑
j=0

jxti,j

 ≥ kd− κ(t). (5)

Let us now focus on a particular cost vector ht = (ht(0), ht(1), . . . , ht(k)) corresponding to time
step t. Recall that ht(j) is the hit cost incurred when serving the request using exactly j servers.
We can express ht as

λtj =

{
ht(j − 1)− ht(j) j = 1, 2, . . . , k
ht(k) j = k + 1

The variables λtj are non-negative as the hit costs are non-increasing in j, i.e., ht(0) ≥ ht(1) ≥
. . . ≥ ht(k). Intuitively, λtj captures the marginal cost of serving the request with strictly less than
j servers.5 The hit cost incurred by a configuration yt = {yti,j}i,j now has a simple formulation.

5We note that we can assume that λtk+1 is always 0. Otherwise, as any valid algorithm (including the optimal one)
always has at most k servers at a given location, any competitive analysis established for the case λtk+1 = ht(k) = 0
carries over to the general case. Thus, from now on we remove λtk+1 and also yi,k+1 (that is always 1) from our
considerations and notation.

10

Let it denote the location on which the hit cost vector ht appears, then the hit cost
∑k−1

j=0 h
t(j)xtit,j

can be expressed as
k∑
j=1

λtj · ytit,j .

Similarly, expression (1) for the movement cost from a configuration yt−1 to a configuration yt

becomes
d∑
i=1

wi

 k∑
j=1

∣∣∣yti,j − yt−1
i,j

∣∣∣
 .

3.1 Description of the Algorithm

In light of the above discussion it suffices to specify how state {yt−1
i,j }i,j evolves to {yti,j}i,j at time t

upon arrival of cost vector ht and server quota κ(t). Our algorithm performs this evolution in two
stages. First, it executes a fix stage in which the number of servers is decreased so as to comply
with a decrease of the quota κ(t). Then, it proceeds with a hit stage, during which the (fractional)
configuration of the servers is modified to react to the cost vector ht. We describe the dynamics
of both stages as a continuous process governed by a set of differential equations. As it turns out,
viewing the evolution of the server configuration this way allows us to both simplify the description
and the analysis of the algorithm. The evolution of the fractional solution during the fix stage is
parametrized by a time index τ that starts at 0 and grows until the number of servers is no more
than κ(t). The hit stage is parametrized by a time index η that starts initially at 0 and ends at 1.

For the sake of simplicity, let us drop the index t from our notation since it does not play any
role in our analysis. We denote the configuration at time t− 1 by y0 and the configuration at time
t by y1. Let λ denote the hit cost vector λt and let i denote the location it that λt penalizes. The
intermediate states of the algorithm are denoted by yτ , τ ≥ 0, during the fix stage, and by yη,
η ∈ [0, 1], during the hit stage. At each time η ∈ [0, 1] (respectively, τ ≥ 0), the algorithm specifies

the derivative
dyηi,j
dη of each variable yηi,j (respectively,

dyτi,j
dτ of each yτi,j). Denote by τe the final value

that τ reaches during the fix stage. Eventually, each yti,j is defined as follows.

yti,j = yt−1
i,j +

∫ τe

τ=0

dyτi,j
dτ

dτ +

∫ 1

η=0

dyηi,j
dη

dη. (6)

An important issue that needs to be addressed is proving that the differential equations speci-
fying the derivatives at each step have a (unique) solution and thus the algorithm is well-defined.
This proof turns out to be non-trivial in the case of the hit stage, since the derivative during this
stage might change in a non-continuous manner. Nevertheless, as we will show, the process is still
well-defined.

Another technical detail is that during the hit stage, in intermediate times η ∈ [0, 1], we will
not work with the hit cost vector λ directly, but rather with a modified cost vector λη that can
vary with η. (During the first reading, the reader may assume that λη = λ and skip the part below
about blocks and go directly to the description of the fractional algorithm.)

We initialize λ0 = λ. To define λη for η > 0, we need the notion of blocks.

11

Blocks: During the hit stage, for each η ∈ [0, 1], we maintain a partition of the index set
{1, . . . , k + 1} (for location ī) into blocks Bη

1 , B
η
2 . . . , B

η
` . The collection of blocks is denoted by

Dη and it satisfies the following properties.

1. yη
ī,j

is identical for all indices j within any block B ∈ Dη. For future reference, let us denote
by yη(B) this common value for all j ∈ B.

2. For any block B = {j, . . . , j + s− 1} of length s in Dη, it holds that for every 1 ≤ r ≤ s,

j+r−1∑
j′=j

1

r
λi,j′ ≤

j+s−1∑
j′=j

1

s
λi,j′ . (7)

That is, the average value of the λ’s in any prefix of a block is no more than the average of
the entire block.

We define λη to be the cost vector obtained by averaging λ over the blocks in Dη. That is, for
each B ∈ Dη, we set λ(B) = (

∑
j∈B λi,j)/|B|, and then

ληi,j =

{
λ(B) if i = i and j ∈ B, for B ∈ Dη,
0 otherwise.

Now, in our algorithm, the initial partitioning D0 of blocks is the trivial one, i.e., one in which
each index j forms its own block. (Note that in this case we indeed have λ0 = λ.) Next, blocks are
updated as η increases. For any η ≥ 0, if two consecutive blocks Bp, Bp+1 ∈ Dη satisfy:

yη(Bp) = yη(Bp+1) and λ(Bp) < λ(Bp+1), (8)

then Bp and Bp+1 are merged and Dη is modified accordingly. Note that the condition λ(Bp) ≤
λ(Bp+1) guarantees that (7) is satisfied in the new block created by merging Bp and Bp+1. As we
shall see later (Lemma 11), a crucial property of the evolution of Dη during the hit stage is that
yη
i,j

s are updated in a way that guarantees that a block never splits once it is formed.

The algorithm. We are now ready to state our algorithm. It is parameterized by a parameter
ε > 0 that will be fixed later.

12

Fractional Allocation Algorithm:
Set β = ε

1+k , α = ln(1 + 1
β) = ln(1 + 1+k

ε).
Fix stage: Set y0 = yt−1.
For any τ ∈ [0,∞), while

∑
i,j y

τ
i,j < kd− κ(t) (i.e., while the total volume of servers exceeds

the quota) we increase each variable yτi,j at a rate:

dyτi,j
dτ

=

{
1
wi

(
yτi,j + β

)
yτi,j < 1

0 yτi,j = 1

Denote by τe the termination time of the fix stage.
Hit stage: Set y0 to be the state obtained at the end of the fix stagea. Define the following
update rule for any η ∈ [0, 1]:

• If
∑

i,j y
η
i,j = kd− κ(t), choose N(η) ≥ 0 such thatb:

dyηi,j
dη

=

0 if either

(
N(η)− αληi,j

)
> 0 and yηi,j = 1,

or
(
N(η)− αληi,j

)
≤ 0 and yηi,j = 0

1
wi

(
yηi,j + β

)
·
(
N(η)− αληi,j

)
otherwise

(9)

and ∑
i,j

dyηi,j
dη

= 0.

• Otherwise (i.e., if
∑

i,j y
η
i,j > kd− κ(t)), set N(η) = 0, and define the derivatives of the

variables as above.

Output: For each (i, j), return yti,j , yt−1
i,j +

∫ τe
τ=0

dyτi,j
dτ dτ +

∫ 1
η=0

dyηi,j
dη dη.

aNote that upon termination of the fix stage,
∑
i,j y

τe
i,j ≥ kd− κ(t).

bAs we show in Lemma 10, there is always a way of choosing N(η) such that the desired conditions are
satisfied.

High-level intuition. Before proving correctness and analyzing the performance of the above
algorithm, we provide some intuition on the dynamics underlying it.

Dynamics of the fix stage: This is fairly straightforward. The algorithm simply increases all
the variables yτi,j that are strictly less than 1 (which decreases the total number of servers), until
the quota κ(t) on the number of servers is met. We note that it may also be the case that the
total number of servers used is already strictly smaller than the quota κ(t) to begin with, e.g., if
the server quota increases at time t. In this case, nothing is done during the fix stage. Notice that
the rate of change of a variable yτi,j is proportional to its value, which means that the change is
governed by an exponential function. This kind of update rule is in line with previous algorithms
for weighted paging [2, 3].

13

Dynamics of the hit stage: For simplicity, let us assume that during this stage we have that
0 < yηi,j < 1, for all (i, j), and each yηi,j is a strictly increasing function of j. That is,

0 < yηi,1 < yηi,2 < . . . < yηi,k < 1, (10)

for all locations i and η ∈ [0, 1].
Note that under this assumption condition (8) will never trigger. As a result, no blocks are

merged and we have λη = λ for all η ∈ [0, 1]. Furthermore, as in this case each variable yηi,j is
strictly between 0 and 1, its rate of change during the hit stage simplifies to:

dyηi,j
dη

=
1

wi

(
yηi,j + β

)
· (N(η)− αλi,j) , (11)

with

N(η) =

0 if

∑
i,j y

η
i,j > kd− κ(t),

∑
i,j

1
wi

(yηi,j+β)·αλi,j∑
i,j

1
wi

(yηi,j+β)
otherwise (i.e. if

∑
i,j y

η
i,j = kd− κ(t)).

(12)

(Note that the value of N(η) in the second case of (12) is determined by the fact that
∑

i,j

dyηi,j
dη

has to be zero.)
Let us study the dynamics given by (11) more carefully. Recall that λi,j = 0 for i 6= i. First, if

the number of servers used is below the quota, i.e. if
∑

i,j y
η
i,j > kd− κ(t), the algorithm responds

to the cost vector λ by simply increasing the number of servers at location ī by decreasing each yη
ī,j

at a rate of 1
wī

(yη
ī,j

+ β) · αλη
ī,j

. To understand this better, it is instructive to consider the special

case when λη
i,j

= 1 for some particular index j and is 0 otherwise (this corresponds to the hit cost

vector hη that incurs cost 1 if there are strictly fewer than j servers at i and cost 0 otherwise). In
this case, the algorithm reduces yη

i,j
and keeps other yηi,j ’s unchanged (in particular yη

i,j+1
and yη

i,j−1

remain unchanged). As yη
i,j+1

and yη
i,j−1

do not change while yi,j decreases, this has the effect of

increasing the probability mass xη
i,j

= yη
i,j+1

− yη
i,j

on (i, j), and decreasing the probability mass

xη
i,j−1

= yη
i,j
− yη

i,j−1
on (i, j − 1)6 Moreover, note that the decrease in xη

i,j−1
is exactly equal to the

increase in xη
i,j

.
Now, let us consider the case when the number of servers used is exactly equal to the quota.

Here, we also need to ensure that the quota is maintained. This is done by offsetting the increase
in the number of servers at location i (as described by the dynamics in the previous paragraph),
by decreasing the number of servers at all locations (including i). This is precisely the purpose
of the term N(η) in (11). It increases yηi,j (and hence decreases the number of servers) at a rate
proportional to 1

wi
(yηi,j + β) (as in the fix stage). Note that as λi,j = 0 for i 6= ī, this update can

only decrease the number of servers at locations i 6= i. The overall number of servers at location i
can only increase, but of course due to the redistribution of probability mass at i, it may happen
that the probability mass at some (i, j) goes down.

Unfortunately, when assumption (10) does not hold, the simple dynamics described above may
produce infeasible configurations. First, increasing or decreasing variables according to (11) does

6In the simplified discussion here we are implicitly assuming that xη
i,j−1

> 0 by assuming that yη
i,j
> yη

i,j−1
.

14

not take into account that the variables need to stay in the range [0, 1], and hence this may be
violated. This happens if (i) a variable is equal to 0 and has a negative derivative, or (ii) when
it is equal to 1 and has a positive derivative. To avoid this problem we need to deactivate such
variables (by setting their derivative to be 0) when either one of these two cases occurs. Moreover,
the above dynamics may also violate the monotonicity condition (4). To avoid this issue, we need
to merge blocks and modify λη accordingly, as was previously described.

Now, the resulting algorithm does not produce infeasible configurations anymore. However, its
dynamics is somewhat more involved. Before we discuss it, let us first provide a formal definition
of an inactive coordinate or variable.

Definition 9. During the fix stage, a coordinate (i, j) for which yτi,j < 1 is said to be active at time
τ . Otherwise it is said to be inactive. During the hit stage, coordinate (i, j) (or variable yηi,j) is said

to be inactive at time η ∈ [0, 1] if either
(
N(η)− αληi,j

)
> 0 and yηi,j = 1, or

(
N(η)− αληi,j

)
≤

0 and yηi,j = 0. Otherwise, coordinate (i, j) is said to be active. Denote by Aη (respectively Aτ) the
set of active coordinates at time η (respectively τ).

Now, by definition, during the hit stage at time η only the active variables might change. So,
we can compactly rewrite the evolution of the variables during the hit stage given in (9) as

dyηi,j
dη

=

{
0 if (i, j) /∈ Aη,
1
wi

(
yηi,j + β

)
·
(
N(η)− αληi,j

)
otherwise

(13)

Furthermore, as we still require that
∑

i,j

dyηi,j
dη =

∑
(i,j)∈Aη

dyηi,j
dη = 0, if

∑
i,j y

η
i,j > kd − κ(t), we

have that N(η) can be expressed as

N(η) =

0 if

∑
i,j y

η
i,j > kd− κ(t),∑

(i,j)∈Aη
1
wi

(yηi,j+β)·αλ
η
i,j∑

(i,j)∈Aη
1
wi

(yηi,j+β)
otherwise (i.e. if

∑
i,j y

η
i,j = kd− κ(t)).

(14)

In light of the above, one can see that the simple evolution of the variables in the special case
of (10), as described by (11), is a special case of the general evolution in which all coordinates
are being active and λη = λ for all η ∈ [0, 1]. The reason why the analysis of the general process
is more complicated is that the set of active coordinates (and the hit cost λη) can, in principle,
change very abruptly between two values of η. Moreover, as stated, equation (14) and Definition
9, have a circular dependency. In particular, the value of N(η) depends on the set Aη, but in turn
the definition of Aη also depends on the value of N(η). As a result, a priori it is not even clear that
our algorithm is well defined. That is, a unique trajectory consistent with our local evolutionary
rules indeed exists. We proceed to proving this now.

Well-definiteness of the algorithm. We start by addressing the above-mentioned issue of the
circular dependency between the value of N(η) and the set Aη. Note that it is not clear any more
that there always exists a non-negative normalization factor N(η) as required by our algorithm.
As we prove in the next lemma, however, one can use a simple continuity argument to prove the
existence of the desired normalization factor.

Lemma 10. There exists a N(η) ≥ 0 for which
∑

i,j

dyηi,j
dη = 0, where the derivatives

dyηi,j
dη are as

defined in the algorithm. Moreover, the set Aη of active coordinates is never empty.

15

Proof. Fix any η ∈ [0, 1]. Let us consider the function f(s) =
∑

i,j(dy
η
i,j/dη)|N(η)=s, i.e., f(s) is the

sum of all derivatives given by equation (9) for the case when N(η) is equal to s.
Clearly, if s = N(η) = 0, then (dyηi,j/dη)|N(η)=s ≤ 0 for each (i, j) and hence f(s) ≤ 0. If

f(0) = 0 then N(η) satisfies the requirements. Note that in this case all coordinates that are
non-zero are active. This set is non-empty as at the beginning of the hit stage the sum over all
coordinates is at least kd− κ(t) > 0.

Thus, suppose that f(0) < 0. Let λmax = maxi,j λ
η
i,j be the largest entry in λη. Then, at

s = N(η) = αλmax we have (dyηi,j/dη)|N(η)=s ≥ 0 for each (i, j) and hence f(s) ≥ 0.
Next, we claim that each derivative (dyηi,j/dη)|N(η)=s is a continuous function of s. To this end,

note that if 0 < yηi,j < 1, then the function (dyηi,j/dη)|N(η)=s is a linear function of s (and thus is
continuous). For yηi,j = 0, the function (dyηi,j/dη)|N(η)=s is zero for s ≤ αληi,j , and then increases

linearly for s ≥ αληi,j – so, again, it is continuous. Similarly, for yηi,j = 1, (
dyηi,j
dη)|N(η)=s is negative

if s ≤ αληi,j , and increases linearly until s = α · ληi,j , and then remains zero.
Now, as each derivative is continuous, so is f . Thus, we know that by the intermediate value the-

orem the preimage f−1(0) in the interval [0, αλmax] is non-empty. Furthermore, as f is continuous
and f(s) < 0 for s = 0, there exists a minimal s∗ such that f(s∗) = 0 and 0 < s∗ ≤ αλmax.

We take N(η) = s∗ and claim that the corresponding set Aη is non-empty (which would prove
the lemma). To see why it is the case, note that if there exists a coordinate 0 < yηi,j < 1 then it
is always active and we are done. Otherwise, let us consider A0 (A1) to be the set of (i, j) with
yηi,j = 0 (resp. with yηi,j = 1). As the sum over all coordinates is at least kd−κ(t) > 0, the set A1 is
non-empty. Suppose for s∗ > 0 all the coordinates in A0, A1 are inactive, then by definition for all
(i, j) ∈ A1, s∗ > αληi,j (note the strict inequality), and for all coordinates in A0, s∗ ≤ αληi,j . This is
a contradiction to the minimality of s∗ as we could find a 0 < s′ < s∗, such that f(s′) = 0.

Now, as our algorithm is defined via a set of differential equations indexed by τ and η, to
prove that it is well-defined we need to show that there exists a unique solution to this set, and
furthermore this solution is feasible for the allocation problem. To this end, we prove the following
lemma, whose proof is in Appendix A.

Lemma 11. There exists a unique solution yτ and yη, defined on the intervals τ ≥ 0, η ∈ [0, 1],
to the set of differential equations defined by the algorithm. Furthermore, the solution satisfies the
following properties:

• Boundary: For each (i, j), and for all 0 ≤ τ , and 0 ≤ η ≤ 1: 0 ≤ yηi,j , yτi,j ≤ 1.

• Monotonicity: For each (i, j), (j ≤ k), yηi,j ≤ y
η
i,j+1 and yτi,j ≤ yτi,j+1.

• Quota: The expected number (volume) of servers at the end of the fix stage and at any
η ∈ [0, 1] does not exceed κ(t). That is,

∑
i,j y

η
i,j ≥ kd− κ(t) for all η ∈ [0, 1].

• Blocks: During the hit stage, Blocks can only merge (and they never split).

• Discontinuity: The total number of times η ∈ [0, 1] that each location (i, j) changes its
status from active to inactive, as well as the number of discontinuity points of N(η) as a
function of η, is finite (in fact, polynomial in k and d).

16

3.2 Cost Accounting

In this section we prove some helpful properties that allow us to charge the algorithm and the
optimal solution in a continuous fashion. This will simplify the potential function based analysis
that we later perform. First, we deal with the charging of the hit cost, and then with the accounting
of the movement cost.

Charging the hit cost. The issue we want to address here is that at a given time t the hit costs
of the optimal solution and our algorithm depend only on the final states of both solutions. More
precisely, if y∗ is the optimal solution at time t, and y = y1 is the final state of the algorithm at
time t, then the hit cost of the optimal solution (respectively, of the algorithm) at time t is equal to
λ · y∗ (respectively, λ · y). However, as our algorithm is described in a continuous fashion, it would
be simpler to also have a way of accounting for the hit costs in a continuous and local fashion.

In particular, we would like to account for the hit cost of the optimal solution as:∫ 1

η=0
λη · y∗ · dη, (15)

and for the hit cost of the algorithm as: ∫ 1

η=0
λη · yηdη. (16)

Note that the above expressions can be interpreted as charging locally at every time η ∈ [0, 1] an
infinitesimally small hit cost of λη ·y∗dη (respectively, λη ·yηdη) to the optimal solution (respectively,
to the algorithm). Now, to make this accounting valid, we need to show that the above expressions
can only overestimate the hit cost of our algorithm and underestimate the hit cost of the optimal
solution. We prove that this is indeed the case in the following lemma.

Lemma 12. The following inequalities hold:∫ 1

η=0
λη · y∗ · dη ≤ λ · y∗, (17)

∫ 1

η=0
λη · yηdη ≥ λ · y. (18)

Proof. We first prove inequality (17). To this end, we show that for any non-decreasing vector
v = (v1, v2, . . .), and any 0 ≤ η1 < η2 ≤ 1, it holds that

λη1 · v ≥ λη2 · v. (19)

Note that as λ = λ0 and y∗ is feasible (and thus satisfies property (4)), taking v equal to y∗

immediately gives Inequality (17).
By Lemma 11, we know that the only difference between λη1 and λη2 is that some of the

blocks in Dη1 can be merged in Dη2 . Therefore, it suffices to show that whenever two consecutive
blocks B1 and B2 merge to form another block B, it holds that λ(B1)

∑
i∈B1

vi +λ(B2)
∑

i∈B2
vi ≥

λ(B)
∑

i∈B vi for any hit cost vector λ.

17

Let `1 = |B1|, `2 = |B2|, and let a1 = (
∑

i∈B1
vi)/`1, a2 = (

∑
i∈B2

vi)/`2. Then, by the definition
of λ(B), the inequality above is equivalent to showing that

λ(B1)`1a1 + λ(B2)`2a2 ≥
(
λ(B1)`1 + λ(B2)`2

`1 + `2

)
(a1`1 + a2`2). (20)

As v is increasing we have a1 ≤ a2, and since B1 and B2 were merged, by (8) it must be that
λ(B1) < λ(B2). A direct calculation shows that (20) holds under these conditions.

Now, to prove that inequality (18) also holds, we prove that whenever the derivative of λη · yη
is defined, i.e., whenever neither Aη nor λη change (which is the case except for possibly finitely
many points, cf. Lemma 11) we have that

d (λη · yη)
dη

≤ 0. (21)

That is, the state yη evolves in a way that reduces the hit cost of the algorithm with respect to the
corresponding hit cost vector.

To see how (18) follows from (21) we first note that (21) implies that

λη · yη ≥ λ1 · y1,

for any η ∈ [0, 1]. Now, we have for any block B ∈ D1, y1
i,j

= y1(B) for all j ∈ B, and thus

λ0 · y1 =
∑
B∈D1

∑
j∈B

λ0
i,j
y1
i,j

=
∑
B∈D1

y1(B)
∑
j∈B

λ0
i,j

=
∑
B∈D1

y1(B)λ1(B)|B| = λ1 · y1,

where we recall that λ1(B) = (
∑

j∈B λ
η

i,j
)/|B| = (

∑
j∈B λ

0
i,j

)/|B|.
So, we can conclude that∫ 1

η=0
λη · yηdη ≥

∫ 1

η=0
λ1 · y1dη =

∫ 1

η=0
λ0 · y1dη = λ0 · y1 = λ · y.

In light of the above, it remains to prove (21). To this end, recall that when Aη and λη are fixed,
the evolution of yηi,js is described by Equation (13), thus the statement we need to prove is

∑
(i,j)∈Aη

ληi,j
wi

(
yηi,j + β

)
·
(
N(η)− αληi,j

)
≤ 0. (22)

Plugging in the expression for N(η) given by (14) and canceling α, we need to show that ∑
(i,j)∈Aη

ληi,j
wi

(
yηi,j + β

)2

≤

 ∑
(i,j)∈Aη

(ληi,j)
2

wi

(
yηi,j + β

) ·
 ∑

(i,j)∈Aη

1

wi

(
yηi,j + β

) .

Now, this inequality follows from the Cauchy-Schwarz inequality (a · b)2 ≤ |a|22|b|22, by taking

a to be the vector with entries ai,j =

√
(ληi,j)

2

wi

(
yηi,j + β

)
, and b to be the vector with entries

bi,j =

√
1
wi

(
yηi,j + β

)
.

18

Charging the movement cost. We turn our attention to the accounting of the movement cost
of our algorithm. Recall that the movement cost at time t is defined as

d∑
i=1

wi

 k∑
j=1

|yti,j − yt−1
i,j |

 . (23)

We would like to approximate this expression by one which is simpler and more convenient to work
with. First, instead of keeping track of both increases and decreases of the variables yti,j as in the
above, we will account for the movement cost only through the increases of the variables yti,j . That
is, our bound for the movement cost is

d∑
i=1

wi

 k∑
j=1

max{yti,j − yt−1
i,j , 0}

 . (24)

Note that we have for any coordinate (i, j) and t ≥ 1

|yti,j − yt−1
i,j | ≤ 2 ·max{yti,j − yt−1

i,j , 0}+ yt−1
i,j − y

t
i,j ,

and thus on any input sequence consisting of T requests, it is the case that

T∑
t=1

d∑
i=1

wi

 k∑
j=1

|yti,j − yt−1
i,j |

 ≤ 2 ·
T∑
t=1

d∑
i=1

wi

 k∑
j=1

max{yti,j − yt−1
i,j , 0}

+
d∑
i=1

wi

 k∑
j=1

y0
i,j − yTi,j

 .

Thus, accounting for the movement cost via expression (24) approximates the true movement cost
(corresponding to expression (23)) up to a multiplicative factor of two and an additive factor of
at most

∑d
i=1 kwi, which depends only on the starting and final configuration, and is zero if the

two configurations coincide. As we will see, for the sake of our competitive analysis, such an
approximation suffices.

Next, similarly to the way we accounted for the hit cost described above, we wish to further
simplify the charging of the movement cost and perform it in a continuous and local fashion.
Namely, it is easy to see that the following quantity

d∑
i=1

wi

 k∑
j=1

∫ 1

τ=0

dyτi,j
dτ

dτ +

∫ 1

η=0
max{

dyηi,j
dη

, 0}dη

can only overestimate the movement cost given by (24). (Note that

dyτi,j
dτ is always non-negative.)

Furthermore, as the derivatives
dyηi,j
dη can only be positive if (i, j) ∈ Aη, we can write∫ 1

η=0
max

{
dyηi,j
dη

, 0

}
dη ≤

∫ 1

η=0

1

wi

(
yηi,j + β

)
N(η) · 1(i,j)∈Aηdη,

where we used (13) and the fact that, trivially, N(η) − ληi,j ≤ N(η). Thus, we can use the above
in our final version of the estimate of the movement cost. The following claim summarizes the
discussion.

19

Claim 13. For any sequence of requests of length T ≥ 1,

T∑
t=1

d∑
i=1

wi

 k∑
j=1

|yti,j − yt−1
i,j |

 ≤
2 ·

T∑
t=1

d∑
i=1

wi

 k∑
j=1

∫ 1

τ=0

dyτi,j
dτ

dτ +

∫ 1

η=0

1

wi

(
yηi,j + β

)
N(η) · 1(i,j)∈Aηdη

+ C ′,

where C ′ ≤
∑

i kwi depends only on the starting and final configuration of the algorithm, and C ′ = 0
if the two configurations coincide.

Thus, at time t, the movement cost of our algorithm is given by:

d∑
i=1

wi

 k∑
j=1

∫ 1

τ=0

dyτi,j
dτ

dτ +

∫ 1

η=0

1

wi

(
yηi,j + β

)
N(η) · 1(i,j)∈Aηdη

 . (25)

3.3 Competitive Analysis

We are finally ready to bound the competitiveness of our algorithm. To this end, we prove the
following theorem.

Theorem 14. Consider an arbitrary instance of the allocation problem with cost vectors h1, h2, . . .,
a starting configuration y0 and a quota pattern κ = (κ(1), κ(2), . . .). For any 0 ≤ ε ≤ 1, we have
the following bounds:

H ≤ (1 + ε) (Opt + wmax · g(k)) + C,

M ≤ O(log(k/ε)) · (Opt + wmax · g(κ)) .

Here, H and M denote the hit and movement costs of our fractional algorithm, and Opt denotes
the sum of the total hit and movement costs of a fixed integral optimum solution to the allocation
problem instance. Let g(κ) :=

∑
t |κ(t)− κ(t− 1)|, and denote by wmax = maxiwi the diameter of

our metric space. Let C be a quantity that depends only on the start and final configurations of the
online algorithm, and C = 0 if the two configurations coincide.

It is easy to see that Theorem 5 immediately follows from the above theorem.
To prove Theorem 14 we employ a potential function approach. Namely, we define potentials

Φh(y, t) and Φm(y, t) that depend on the state y of the online algorithm and on the state of some
arbitrary fixed integral optimum solution at time t. Then we show that the following inequalities
are satisfied at each time step t.

Mt + ∆Φm
t ≤ (1 + ε) · α · (wmax · |κ(t)− κ(t− 1)|+ M∗t + H∗t) , (26)

Ht + ∆Φh
t +

1

α
∆Φm

t ≤ (1 + ε) (wmax · |κ(t)− κ(t− 1)|+ M∗t + H∗t) . (27)

Here, Ht (respectively H∗t) and Mt (respectively M∗t) denote the hit and movement costs
incurred by the algorithm (respectively optimum) at time t. The quantities

∆Φh
t := Φh(yt, t)− Φh(yt−1, t− 1), ∆Φm

t := Φm(yt, t)− Φm(yt−1, t− 1)

20

respectively denote the change in the potentials Φh and Φm at time step t.
As we shall see, it will be the case that Φm(y, t) ≥ 0 and Φm(y0, 0) = 0. Moreover, both

Φm(y, t) and Φh(y, t) will be bounded by some universal constant C, independent of the length of
the request sequence. Thus, Theorem 14 will follow by summing up (26) and (27) over all times t.
(Note that in our algorithm α = log(1 + 1/β) = O(log(k/ε)).)

The potential functions. The potential function Φm is defined as follows.

Φm(y, t) := (1 + ε) ·
∑
i

wi

∑
j

y∗ti,j · log

(
1 + β

yηi,j + β

) .

Here, y∗t denotes the configuration of the optimum solution at time t. Note that if the configuration
y∗t is integral and the optimum has k∗i servers at location i at time t, then the contribution of
location i to Φm(yt, t) is

wi

∑
j>k∗i

log

(
1 + β

yti,j + β

) .

So, roughly speaking, Φm(yt, t) accounts for the excess servers in the online configuration yt

at location i compared to the optimum solution. For example, suppose that yt has ki servers at
location i, i.e., yti,j = 0 for j ≤ ki, for some ki > k∗i , and yti,j = 1 otherwise. Then the contribution
of location i to Φm(yt, t) is O(wi(ki − k∗i) log k). Intuitively, the offline adversary can penalize the
online algorithm for “wasting” ki − k∗i servers at i, by giving cost vectors at the other locations
(where the optimum has more servers), and making it pay a larger hit cost. The potential Φm(yt, t)
will be used to offset this additional hit cost in such situations.

Next, we define the potential Φh to be

Φh(y, t) :=
1

α

∑
i,j

wi · yti,j

 .

It is easily verified that both potentials are bounded. Moreover Φm(y0, 0) = 0, as both offline and
online are assumed to start with the same initial configuration.

The proof plan. Our goal now is to show that Inequalities (26) and (27) always hold. For ease
of analysis, we will consider the events at time t in three steps, and show that Inequalities (26) and
(27) hold at each of these steps. The steps are the following:

1. The quota κ(t) either increases, decreases, or stays unchanged, compared to κ(t− 1), and the
optimal solution removes/adds servers accordingly.

2. The optimal solution moves some servers and its state changes from y∗t−1 to y∗t.

3. The online algorithm changes its state from yt−1 to yt: first, we analyze the fix stage then
we analyze the hit stage. Also, while analyzing the hit stage, the hit costs of both the online
algorithm and the optimal solution are accounted for.

21

The server quota increases/decreases and the optimum removes/adds servers. Note
that the only quantities that can change in this step are the movement cost of the optimum and
the potential Φm, thus it suffices to prove that Inequality (26) is preserved (in this case, (27) is
identical to (26) scaled by 1/α). Now, there are two cases to consider, depending on how κ(t)
changes.

• Suppose κ(t) < κ(t−1), then the optimum has to withdraw |κ(t)−κ(t−1)| servers from some
locations. That is, for |κ(t)− κ(t− 1)| locations (i, j), the corresponding variables y∗(t−1)

i,j are
set to 1, and as a result these locations start contributing to Φm. Clearly, each such location
(i, j) increases Φm by at most

(1 + ε)wi · log

(
1 + β

yt−1
i,j + β

)
≤ (1 + ε) ln

(
1 +

1

β

)
· wmax = (1 + ε)α · wmax.

As a result, the total increase of Φm is at most wmax · (1 + ε)α · |κ(t)− κ(t− 1)|, and hence
(26) holds even without accounting for the movement cost of the optimum.

• Suppose κ(t) ≥ κ(t−1), then the optimum can bring in |κ(t)−κ(t−1)| servers, and as a result
Φm can only decrease, as some terms y∗(t−1)

i,j may change from 1 to 0, thus not contributing
anymore to Φm. Hence, (26) also holds in this case.

The optimum moves its servers. Without loss of generality, it suffices to analyze the case in
which the optimum moves exactly one server from location i to i′. (If multiple servers are moved,
we can consider these moves one by one.) Also, as before, only Φm and the offline movement cost
change, and hence it suffices to just show that (26) holds, and in particular that

∆Φm
t ≤ (1 + ε)αM∗t.

Suppose that location i had j servers prior to the movementand this number is reduced to j − 1
(recall that by our convention we account only for the movement cost corresponding to withdrawal
of servers). Then, the contribution of location i to Φm increases by precisely

wi(1 + ε) · log

(
1 + β

yt−1
i,j + β

)
≤ wi(1 + ε) · α = (1 + ε)αM∗t.

In contrast, increasing the number of servers at i′ can only decrease Φm. Thus, we get that the
desired inequalities hold in this case.

The online algorithm is executed. The case in which the online algorithm changes its distri-
bution yt is the most interesting, and we analyze Inequalities (26) and (27) separately. Recall that
our online algorithm works in two steps: the fix stage and the hit stage, and hence we consider
these separately. Moreover, as the evolution of the algorithm is described in a continuous manner,
we will analyze Inequalities (26) and (27) in such a manner too.

22

The fix stage: proof of Inequality (26). To show that Inequality (26) holds during the fix
stage it suffices to prove that for any τ ,

dMt

dτ
+
dΦm

dτ
≤ 0. (28)

By definition of
dyτi,j
dτ during the fix stage and our way of accounting for the movementcost (cf.

Claim 13) we have

dMt

dτ
=

∑
(i,j)∈Aτ

wi ·
1

wi

(
yτi,j + β

)
=

∑
(i,j)∈Aτ

(
yτi,j + β

)
.

(Recall that Aτ is the set of active coordinates (i, j), i.e. those for which yi,j < 1.) Also, it is easy
to see that the change in the potential function Φm is

dΦm

dτ
= −(1 + ε)

∑
(i,j)∈Aτ

y∗ti,j .

Next we need to prove the following claim

Claim 15. Consider a subset A of the coordinates and two configurations y and y′ with
∑

(i,j)∈A y
′
i,j ≥

1, and
∑

i,j y
′
i,j ≥ kd− k, we have then that∑

(i,j)∈A

(yi,j + β)− (1 + ε)
∑

(i,j)∈A

y′i,j ≤
∑

(i,j)∈A

yi,j −
∑

(i,j)∈A

y′i,j .

Before we prove this claim, let us describe how (28) follows from it. If we set y = yτ , y′ = y∗t,
and A = Aτ , then, clearly,

∑
i,j y

∗t
i,j = kd − κ(t) ≥ kd − k. Furthermore, since (i, j) /∈ Aτ only if

yτi,j = 1, and as we apply the fix stage only if
∑

i,j y
τ
i,j < kd − κ(t), we need to have |Aτ | > κ(t),

and thus ∑
(i,j)∈A

y∗ti,j ≥ kd− κ(t)− |Aτ | ≥ 1.

So, both requirements of the claim are satisfied and it follows that

dMt

dτ
+
dΦm

dτ
=

∑
(i,j)∈Aτ

(yτi,j + β)− (1 + ε)
∑

(i,j)∈Aτ
y∗ti,j ≤

∑
(i,j)∈Aτ

yτi,j −
∑

(i,j)∈Aτ
y∗ti,j ≤ 0, (29)

where the last inequality follows, as
∑

i,j y
τ
i,j < kd− κ(t) =

∑
i,j y

∗t
i,j , and (i, j) /∈ Aτ only if yτi,j = 1

implies that
∑

(i,j)∈Aτ y
τ
i,j ≤

∑
(i,j)∈Aτ y

∗t
i,j .

Proof of Claim 15. As
∑

i,j y
′
i,j ≥ kd− k and

∑
(i,j)∈A y

′
i,j ≥ 1, we have that

|A|
k + 1

−
∑

(i,j)∈A

y′i,j ≤
|A|
k + 1

−max{|A| − k, 1} ≤ 0, (30)

where the last inequality follows as |A|k+1 < 1 when |A| ≤ k, and |A|
k+1 ≤ |A| − k when |A| ≥ k + 1.

23

Now, the claim is proved by noticing that

∑
(i,j)∈A

(yi,j + β)− (1 + ε)
∑

(i,j)∈A

y′i,j = ε

 |A|
k + 1

−
∑

(i,j)∈A

y′i,j

 +

 ∑
(i,j)∈A

yi,j −
∑

(i,j)∈A

y′i,j

≤

∑
(i,j)∈A

yi,j −
∑

(i,j)∈A

y′i,j ,

where the inequality follows by (30).

The fix stage, proof of Inequality (27). To prove that Inequality (27) holds during the fix
stage as well, we note that as we are accounting for the hit cost during the hit stage, currently
there is no hit cost incurred, and hence we just need to show that

dΦh

dτ
+

1

α

dΦm

dτ
= 0. (31)

Observe that
dΦh

dτ
=

1

α

∑
(i,j)∈Aτ

wi
dyi,j
dτ

which is exactly 1/α times our accounting for the movement cost in the fix stage (cf. Claim 13).
Therefore, (31) is identical to (29) (up to a scaling by 1/α), and hence follows from the above proof.

The hit stage, proof of Inequality (27). Recall that both the optimal solution and the online
algorithm incur a hit cost in this stage. We start by proving that Inequality (27) holds during this
stage – later, we will analyze Inequality (26). We need to show that

dHt

dη
+
dΦh

t

dη
+

1

α

dΦm
t

dη
≤ (1 + ε)

dH∗t
dη

. (32)

First, we note that by our way of accounting for the hit cost of the algorithm (cf. (16))

dHt

dη
=
∑
i,j

ληi,jy
η
i,j and

dΦh
t

dη
=

1

α

∑
(i,j)∈Aη

(
yηi,j + β

)
·
(
N(η)− αληi,j

)
.

Now, we have that

dHt

dη
+
dΦh

t

dη
=

∑
i,j

ληi,jy
η
i,j +

1

α

∑
(i,j)∈Aη

(
yηi,j + β

)
·
(
N(η)− αληi,j

)
=

∑
(i,j)/∈Aη

ληi,jy
η
i,j +

1

α

∑
(i,j)∈Aη

(yηi,j + β) ·N(η)−
∑

(i,j)∈Aη
βληi,j

≤
∑

(i,j)/∈Aη
ληi,jy

η
i,j +

1

α

∑
(i,j)∈Aη

(yηi,j + β) ·N(η) =
∑

(i,j)/∈Aη
ληi,jy

η
i,j +

1

α

dMt

dη
,

24

where in the last step we used the expression for our movement cost accounting (cf. Claim 13),

dMt

dη
=

∑
(i,j)∈Aη

(
yηi,j + β

)
·N(η). (33)

Thus, to establish (32), it suffices to show that∑
(i,j)/∈Aη

ληi,jy
η
i,j +

1

α

dMt

dη
+

1

α

dΦm
t

dη
≤ (1 + ε)

dH∗t
dη

. (34)

By our update rule for yηi,j , the derivative of Φm
t is

dΦm
t

dη
= −(1 + ε)

∑
(i,j)∈Aη

y∗ti,j ·
(
N(η)− αληi,j

)
.

Finally, by our way of accounting for the hit cost of the optimal solution (cf. (15)) we have

dH∗t

dη
=
∑
i,j

ληi,jy
∗t
i,j .

Thus, after multiplying Inequality (34) by α and plugging in the above equalities, we need to prove
that

α
∑

(i,j)/∈Aη
ληi,jy

η
i,j+

∑
(i,j)∈Aη

(
yηi,j + β

)
·N(η)−(1+ε)

∑
(i,j)∈Aη

y∗ti,j ·
(
N(η)− αληi,j

)
−(1+ε)α

∑
i,j

ληi,jy
∗t
i,j ≤ 0.

(35)
Let A′ be the set of all coordinates that are either active or have yηi,j = 0. As any inactive coordinate
has yηi,j ∈ {0, 1}, we observe that:

• If (i, j) ∈ A′ \Aη, then it must be that yηi,j = 0 and αληi,j ≥ N(η). This holds, as a coordinate

for which yηi,j = 0 can be inactive only if
dyηi,j
dη = (yηi,j + β)(N(η)− αλ) ≤ 0.

• If (i, j) /∈ A′ it must be that yηi,j = 1 and αληi,j < N(η). This holds, as a coordinate for which

yηi,j = 1 can be inactive only if
dyηi,j
dη = (yηi,j + β)(N(η)− αλ) > 0.

Thus, using the above observations, we may rewrite (35) and get that

N(η) ·

 ∑
(i,j)∈Aη

(
yηi,j + β

)
− (1 + ε)

∑
(i,j)∈Aη

y∗ti,j

− (1 + ε)α
∑

(i,j)/∈Aη
ληi,jy

∗t
i,j + α

∑
(i,j)/∈Aη

ληi,jy
η
i,j

≤ N(η) ·

 ∑
(i,j)∈A′

(
yηi,j + β

)
− (1 + ε)

∑
(i,j)∈A′

y∗ti,j

− (1 + ε)α
∑

(i,j)/∈A′
ληi,jy

∗t
i,j + α

∑
(i,j)/∈Aη

ληi,jy
η
i,j

≤ N(η) ·

 ∑
(i,j)∈A′

(
yηi,j + β

)
− (1 + ε)

∑
(i,j)∈A′

y∗ti,j

+ α
∑

(i,j)/∈A′
ληi,j

(
yηi,j − y

∗t
i,j

)

≤ N(η) ·

 ∑
(i,j)∈A′

(
yηi,j + β

)
− (1 + ε)

∑
(i,j)∈A′

y∗ti,j +
∑

(i,j)/∈A′

(
yηi,j − y

∗t
i,j

) .

25

The first inequality follows as (i, j) ∈ A′ \ Aη, then it must be that αληi,j ≥ N(η), and because
Aη ⊆ A′. The second inequality follows since for all (i, j) ∈ A′ \ Aη it must be that yηi,j = 0.
The third inequality follows as αληi,j < N(η) for (i, j) /∈ A′, and by the observation that for each
(i, j) /∈ A′, yηi,j = 1 ≥ y∗ti,j .

If N(η) = 0, then the above expression equals 0, and we are done. Otherwise, if N(η) > 0, we
get that

∑
(i,j)∈A′

(
yηi,j + β

)
− (1 + ε)

∑
(i,j)∈A′

y∗ti,j +
∑

(i,j)/∈A′

(
yηi,j − y

∗t
i,j

)
≤

∑
(i,j)∈A′

yηi,j −
∑

(i,j)∈A′
y∗ti,j +

∑
(i,j)/∈A′

(
yηi,j − y

∗t
i,j

)
(36)

=
∑
(i,j)

yηi,j −
∑
(i,j)

y∗ti,j = 0. (37)

Inequality (36) follows from Claim 15 by the following arguments. ¿From Lemma 10 we know that
the set Aη is non-empty. We claim that this implies that

∑
(i,j)∈A′ y

η
i,j has to be positive. Otherwise,

all the active coordinates would have yηi,j = 0, and thus could only increase, contradicting the fact

that when N(η) > 0,
∑

i,j

dyηi,j
dη =

∑
(i,j)∈Aη

dyηi,j
dη = 0. Moreover, as N(η) > 0,

∑
i,j y

η
i,j is equal

to
∑

i,j y
∗t = kd − κ(t) (and thus is integral). Now, as yηi,j = 1 if (i, j) /∈ A′, we have that∑

(i,j)∈A′ y
∗t
i,j ≥

∑
(i,j)∈A′ y

η
i,j and that

∑
(i,j)∈A′ y

η
i,j is integral as well. As this quantity is positive

by the argument above, we get that ∑
(i,j)∈A′

y∗ti,j ≥
∑

(i,j)∈A′
yηi,j ≥ 1. (38)

Thus, we can use Claim 15 with y = yη, y′ = y∗t and A = A′ (as all the requirements of this
claim are satisfied). The last equality follows, since for N(η) > 0, we get from the algorithm,∑

i,j y
η
i,j = kd− κ(t) =

∑
i,j y

∗t
i,j .

The hit stage, proof of Inequality (26). To show that (26) holds, we need to show that

dMt

dη
+
dΦm

t

dη
≤ (1 + ε)α · dH

∗t

dη
. (39)

However, this follows directly by noting that the above is simply Inequality (34) after removing the
first (non-negative) term and scaling by α.

4 Fractional k-server on Weighted HSTs

In this section, we show how the fractional allocation algorithm on a weighted star can be used as
a building block to obtain a fractional k-server solution on a weighted HST. In particular, we prove
the following.

Theorem 6. Let T be a weighted σ-HST with depth `. If, for any 0 ≤ ε ≤ 1, there exists a
(1+ε, log(k/ε))-competitive algorithm for the fractional allocation problem on a weighted star, then

26

there is an O(` log(k`))-competitive algorithm for the fractional k-server problem on T , provided
σ = Ω(` log(k`)).

To this end, we focus on a particular weighted σ-HST T and show how to construct a fractional
k-server algorithm on it. Roughly speaking, the construction works as follows. Each internal node
p of T will run a number of instances of the allocation problem which differ with respect to their
quota patterns, but have the same hit cost vectors. These instances are maintained as a convex
combination. The fractional solutions to the different instances, which we compute online using
the fractional allocation algorithm, determine in a recursive manner how the servers available at
each node are distributed among its children.

While this approach is similar to the approach of Coté et al. [16], the main difference here is
that we can use the (much weaker) fractional allocation problem instead of using a randomized
(integral) algorithm for the allocation problem.

Let us denote by r the root of our σ-HST T . Recall that for a node p of T , T (p) denotes the
subtree rooted at p, W (p) is the length of the edge connecting p to its parent, and w(p, i) denotes
the length of the edge connecting p to its child pi. By the definition of a weighted σ-HST, we have
W (p) ≥ σw(p, i) for all children i of p, unless p is either a leaf or the root.

Recall that the input to the fractional allocation problem running at node p consists of the
quota pattern κ = (κ(1), κ(2), . . .) specifying the number of servers κ(t) available at each time t,
and the hit cost vectors ht that arrive at each time t at location it. The output of an algorithm for
the fractional allocation problem specifies a fractional solution xt that provides a distribution on
the number of servers at each location pi, subject to the aggregate bound of κ(t) on the (expected)
number of servers.

Now, let us fix some instance ρ of the k-server problem on the leaves of T . Let ρ = (ρ(1), ρ(2), . . .)
be the request sequence, where ρ(t) denotes the leaf requested at time t.

Definition 16. For a node p, integer j and time t, let Optcost(p, j · ~1, t) be the optimum cost for
serving the k-server instance {ρ(1), . . . , ρ(t)} ∩ T (p), i.e. the request sequence ρ restricted to the
leaves of T (p) until time t, subject to the constraint that exactly j servers are available.

Remark: Optcost is well defined only with respect to an initial configuration, which we will
always assume to be the initial starting positions of the servers at t = 0. Also, we use the notation
Optcost(p, j · ~1, t), instead of just Optcost(p, j, t), as we will later extend the definition of Optcost
to the case in which j can vary with time. For now, we only consider fixed j.

4.1 The algorithm

In this section we define the ensemble of allocation problems that will be running at each of the
internal nodes of T . To do this, we have to define how the hit-cost vectors and the quota patterns
are generated. Consider some internal node p. As mentioned earlier, each internal node p will run
several instances of the allocation problem that are different with respect to their quota pattern.
It will also hold a convex combination over these instances. All instances will have the same hit
cost vector that will be defined later. We denote the convex combination over allocation instances
on node p at time t by Λtp. Λtp is specified via the collection

Λtp = {(λtp,s, κtp,s, Ht
p)}s, ∀t, p,

∑
s

λtp,s = 1

27

Here λtp,s determines the fraction at time t given to the instance with quota pattern κtp,s (until
time t), and Ht

p = {h1
p, h

2
p, . . . , h

t
p} is the sequence of hit cost vectors that have appeared until

time t. As we will see shortly, the hit cost vector will be the same for all instances s ∈ Λtp and
therefore there is no subscript s to the hit cost. We will use the notation s ∈ Λtp to index the triples
(λtp,s, κ

t
p,s, H

t
p) in Λtp. As we shall see later, the convex combination Λtp will be a refinement of the

convex combination Λt−1
p , for every t.

To complete the description of the fractional k-server algorithm we need to define Λtp for each
node p and time t, and show how the fractional number of servers at the leaves of T is computed.
We begin with defining how the hit costs htp are generated for each node p.

Hit costs: Consider any internal node p. Let p1, . . . , pd be the children of p. For the allocation
problems running at p, at time t we give the hit cost vector

htpi(j) = Optcost(pi, j ·~1, t)−Optcost(pi, j ·~1, t− 1).

As Coté et al. [16] prove, the cost vectors htpi have the desired monotonicity property, i.e., htpi(0) ≥
htpi(1) ≥ . . . ≥ htpi(k) for each i and time t. The following crucial observation follows directly from
the definition of the k-server problem.

Observation 17. Consider subtree T (p) and request ρ(t). If ρ(t) ∈ T (pi), then

1. htp(i, 0) =∞. (This follows since any 0-server solution is infeasible for any instance with one
or more requests, or equivalently incurs infinite cost.).

2. htp(i
′, j) = 0 for all i′ 6= i and for all j. (This follows simply since the request is not in the

sub-tree of pi′ for i′ 6= i.).

This completes the description of the cost vectors of node p. We next define the quota patterns
κp,s(t) for the various allocation instances running at node p.

Quota patterns: The quota patterns are determined recursively in a top down manner over
the tree T (and inductively over time) by the fractional solutions of the allocation instances that
are generated at each node. To specify how these patterns evolve, we describe below a procedure
for updating both the quota patterns κtp,s and the convex combination λtp,s, associated with the
allocation instances maintained.

Base case:

1. At the root r of the tree T there is a single allocation instance running with a quota of k at
all times. That is, Λtr consists of a single allocation instance (with fraction 1), hit costs as
described above, and κ = k ·~1.

2. For any internal node p ∈ T and time t = 0, Λ0
p consists of a single allocation instance (with

fraction 1). The quota pattern κp,s for this single instance s, until time t = 0, is simply the
number of servers present initially at the leaves of subtree T (p). Moreover, there is no hit
cost thus far.

28

The inductive step: Consider time t. We describe the procedure to obtain Λtp from Λt−1
p in a top

down manner on the tree as follows. As the base case, recall that Λtr has already been determined
for all t. Arguing inductively top down on the tree, suppose that Λtp has already been determined.
Then, for the children p1, . . . , pd of p, we determine Λtpi as follows.

Consider the allocation instances that are executed at node p. Let {xti,j,s}i,j,s be the fractional
solutions generated (by the allocation instances) at time t. The algorithm will maintain the fol-
lowing consistency between the quota for servers available at pi and what the allocation problems
running at the parent p determine. In particular,

(Consistency)
∑

s∈Λtpi | κ
t
s(t)=j

λts =
∑
s∈Λtp

λtsxi,j,s , xti,j , (40)

Also, for each child pi it should maintain

(Convex combination)
∑
s∈Λtpi

λts = 1. (41)

Suppose that xt−1
i,j changes to xti,j due to the execution of the allocation instances s ∈ Λtp at

time t. We show how to update Λtpi from Λt−1
pi such that it remains consistent with (40) and (41).

This update will be done in a natural (and cost-efficient) way.
Consider first the cost paid by the convex combination of the allocation instances running at

node p. The cost is

∑
s

∑
i

w(p, i)λts

k∑
j=1

∣∣∣∣∣∣
∑
`<j

(
xti,`,s − xt−1

i,`,s

)∣∣∣∣∣∣ ≥
∑
i

w(p, i)
k∑
j=1

∣∣∣∣∣∣
∑
s

λts
∑
`<j

(
xti,`,s − xt−1

i,`,s

)∣∣∣∣∣∣ , (42)

where the inequality follows, since for any non-negative numbers pi,
∑

i pi|ai| ≥ |
∑

i piai|.
We note that the change from xt−1

i,j to xti,j can be decomposed into a collection of elementary
moves in which ±δ(i, j) units of mass are removed from xi,j and put on xi,j±1, such that the total
fractional movement cost remains the same. Thus, we can assume without loss of generality that
xti,j and xt−1

i,j differ by an elementary move.
Consider an elementary move where xti,j = xt−1

i,j − δ and xti,j−1 = xti,j−1 + δ (all other types of
elementary moves are handled analogously). To implement this, we choose an arbitrary δ measure
of allocation problems s ∈ Λt−1

pi with κs(t − 1) = j and set κs(t) to j − 1. For all other κs, we
set κs(t) = κs(t − 1). After all entries are updated by applying the elementary moves, κs(t) is
determined.

It is clear that this update rule maintains both (40) and (41). This completes the procedure for
obtaining Λti from Λt−1

i .

Obtaining the fractional k-server solution: To complete the description of our algorithm we
should describe how to determine the fractional number of servers at each leaf q at each time t.
This is determined in a natural way using the following observation. Consider a leaf q and let p be
its parent. Then,

z(q, t) :=
∑
s∈Λtp

λts
∑
j

j · xtq,j,s

29

is the number of servers at q at time t. Here, xtq,j,s is the probability of having j servers at q at
time t, when the fractional allocation algorithm is applied to the allocation instance s ∈ Λtp.

4.2 Feasibility

We first note that our fractional k-server solution is feasible since it satisfies the following.

Lemma 18. Whenever there is a k-server request ρ(t), then there is at least one server unit at the
location ρ(t), i.e. zρ(t),t ≥ 1. This holds provided the total cost incurred by the allocation problems
is finite.

Proof. The lemma follows by the way the hit costs are generated. Suppose leaf q is requested at
time t, and q is the i-th child of its parent p. Then, by observation 17 (part 1), the hit cost entry
ht(i, 0) for every allocation instance running at p is ∞. Thus, if the total cost of the allocation
problems is finite, it must be that for each s ∈ Λtp, the algorithm ensures that xtq,0,s = 0. Since,∑

j x
t
q,j,s = 1 for all s, and

∑
s∈Λtp

λs = 1, it follows that z(q, t) =
∑

s∈Λtp
λts
∑

j j · xtq,j,s ≥ 1.

Remark: Lemma 18 assumes that the total cost of the allocation problems is finite. Later on
we show that the cost is in fact bounded by at most a polylogarithmic factor from the optimal
k-server cost, and hence finite.

4.3 Performance analysis

We first show that the cost of the fractional k-server solution we generate (at the leaves of the tree)
is at most the total convex combination cost of the allocation instances running on T . For a node
p (not necessarily a leaf) in T , let z(p, t) denote the total (fractional) number of servers at time t
at the leaves of the subtree T (p). The cost of the k-server solution is∑

t

∑
p

W (p)|z(p, t)− z(p, t− 1)|.

Lemma 19. The movement cost incurred by the fractional k-server solution is no more than the
total movement cost incurred by the convex combination of the allocation instances running on
internal nodes of T .

Proof. First, we claim that z(p, t) =
∑

s∈Λtp
λtsκ

t
s(t). This follows from the consistency relation (40)

we maintain, and our procedure for generating Λtp from Λt−1
p . In particular, κts(t) is the number of

servers available for the fractional allocation instance s running at p. Since the solution produced
by the fractional allocation algorithm on this instance satisfies

∑
i

∑
j j ·xti,j,s = κts(t),

7 this implies
that ∑

s∈Λtp

λtsκ
t
s(t) =

∑
s∈Λtp

λts
∑
i

∑
j

j · xti,j,s =
∑
i

∑
j

∑
s′∈Λtpi |κ

t
s′ (t)=j

jλts′ =
∑
i

∑
s′∈Λtpi

λts′κ
t
s′(t).

7Note that when we designed the fractional allocation algorithm in Section 3, we allowed it to deploy less servers
than the current quota. As a result, when applying this algorithm here we could sometimes have

∑
i

∑
j j · x

t
i,j,s <

κts(t). To see that our analysis is still valid in this case, it suffices to consider a modified version of the tree T .
In this version, each non-leaf node p of T would have a dummy leaf ip (that will never be requested in our input
sequence) added as its child and set the length w(p, ip) of the corresponding edge to 0. Now, we would just make
each instance of the fractional allocation run at each such p deposit any unused quota of servers at the leaf ip. Note
that as w(p, ip) = 0, this depositing would not incur any additional movement cost and that the modified tree would
still be a weighted σ-HST.

30

The second equality above follows from (40). Applying this iteratively, and noting that z(q, t) for
a leaf q is simply

∑
s′∈Λtq

λts′κ
t
s′(t), it follows that z(p, t) =

∑
s∈Λtp

λtsκ
t
s(t).

Suppose that δ = z(p, t) − z(p, t − 1) > 0 server units are removed from the subtree T (p) (the
case when δ < 0 is analogous). Let p′ be the parent of p (note that p 6= r, since z(r, t) = k for
all t). As z(p, t) =

∑
s∈Λt

p′
λts
∑

j j · xtp,j,s, it follows that the allocation algorithm running on the

instances s ∈ Λtp′ will incur a movement cost of at least

W (p)
∑
s∈Λt

p′

λts

k∑
j=1

∣∣∣∣∣∣
∑
`<j

(xtp,`,s − xt−1
p,`,s)

∣∣∣∣∣∣ ≥ W (p) ·

∣∣∣∣∣∣∣
∑
s∈Λt

p′

λts

k∑
j=1

∑
`<j

(
xtp,`,s − xt−1

p,`,s

)∣∣∣∣∣∣∣
= W (p) ·

∣∣∣∣∣∣∣
∑
s∈Λt

p′

λts

k∑
j=0

(k − j)(xtp,j,s − xt−1
p,j,s)

∣∣∣∣∣∣∣
= W (p) ·

∣∣∣∣∣∣∣
∑
s∈Λt

p′

λts

k∑
j=0

(−j)(xtp,j,s − xt−1
p,j,s)

∣∣∣∣∣∣∣
= W (p) · |z(p, t)− z(p, t− 1)|,

where we used the fact that k ·
∑k

j=0 x
t
p,j,s = k = k ·

∑k
j=0 x

t−1
p,j,s.

Given Lemma 18 and 19 above, it suffices to consider the total movement cost incurred by the
allocations instances running on the tree T and compare it with the optimum k-server cost. This
will be our goal in the following. We begin by defining a notion of optimum k-server cost on a
weighted σ-HST T when k varies over time.

Definition 20. Let T (p) be the subtree rooted at p, and let κ be a quota pattern. We define
Optcost(p, κ, t) as the optimum cost of serving the request sequence ρ ∩ T (p) until time step t
subject to the constraint that κ(t′) servers are available at each time t′, for 1 ≤ t′ ≤ t.

We should be precise about the meaning of a k-server solution on T in the case κ(t) can vary.
First, at any time t′ there should be one server unit at the requested location ρ(t′). The cost of
the solution is the total movement cost of the servers. The servers are always located on the leaves
of T . At time t, when the number of servers changes from κ(t − 1) to κ(t), we will require that
κ(t)− κ(t− 1) servers enter (or leave, if κ(t) < κ(t− 1)) from the root of T .

For a vector κ, let us define g(κ, t) =
∑t

t′=1 |κ(t′) − κ(t′ − 1)|. The following is a simple but
very useful fact about Optcost, that we will need.

Lemma 21. Let p be an internal node in T with children p1, . . . , pd. For any k-server request
sequence ρ on the leaves of T and any quota pattern vector κ, the following recurrence holds.

Optcost(p, κ, t) = min
κ1,...,κd:

∑d
i=1 κi=κ

(
d∑
i=1

Optcost(pi, κi, t) + w(p, i)

d∑
i=1

g(κi, t)

)
. (43)

Here, in the base case in which p is a leaf, define Optcost(p, κ, t) = ∞ if there is some time
t′ ≤ t such that ρ(t′) = p and κ(t′) = 0. Otherwise, if κ(t′) ≥ 1, whenever ρ(t′) = p, define
Optcost(p, κ, t) = 0.

31

Proof. The condition
∑d

i=1 κi = κ ensures consistency between the number of servers in T (p) and
its subtrees T (pi). The term Optcost(pi, κi, t) measures the cost of serving the requests within
T (pi) and g(κi, t) measures the cost of servers leaving or entering subtree T (pi).

Next, we need the following key lemma that relates Optcost(p, κ, t) to our procedure for gener-
ating hit costs at node p.

Lemma 22. Let p be a non-root node of T . Given a quota pattern κ for T (p), let Optcost(p, κ, t)
be as defined above. Then,∣∣∣∣∣Optcost(p, κ, t)−

t∑
t′=1

ht
′
p (κ(t′))

∣∣∣∣∣ ≤ 2 · 1

σ − 1
·W (p) · g(κ, t), (44)

where ht
′
p (j) = Optcost(p, j ·1, t′)−Optcost(p, j ·1, t′−1) denotes the incremental cost of the optimal

k-server solution for T (p) with exactly j servers.

This lemma (for the case of HSTs) is implicit in the work of Coté et al. [16]. For completeness,
and since we need the extension to weighted σ-HSTs, we give a proof of Lemma 22 in Appendix B.

We are now ready to prove the following theorem.

Theorem 23. Let T be a weighted σ-HST with σ > 9, depth `, and diameter ∆. Let ρ be a k-server
request sequence on T , and κ be the quota pattern. Consider the total movement cost incurred by
the convex combination of the allocation instances running on nodes of T (based on the algorithm
described in Section 4.1). This cost is no more than

β`(Optcost(r, κ,∞) + ∆ · g(κ,∞)),

where β` satisfies the recurrence β` = γβ`−1 + O (log(k/ε)), and β0 = 1. Here, ε is any constant
for which the fractional allocation algorithm is (1 + ε,O(log(k/ε)))-competitive, and

γ = (1 + ε)

(
1 +

3

σ

)
+O

(
1

σ
log(k/ε)

)
.

We first show how Theorem 23 implies Theorem 6. The recurrence β` ≤ γβ`−1 + O(log(k/ε))
in Theorem 23, together with β0 = 1, implies that

β` = O(log(k/ε))

(
γl+1 − 1

γ − 1

)
.

Choosing ε = 1/(4`), and provided σ = Ω(ε−1 log(k/ε)) = Θ(` log(k`)), we get that γ ≤ (1 + 1
2`),

and hence
β` = O(` log(k/ε)) = O(` log(k`)).

As g(k ·~1,∞) = 0, this implies an O(` log(k`)) guarantee for a weighted σ-HST of depth `, provided
σ = Ω(` log(k`)). We now prove Theorem 23.

Proof. (Theorem 23): We prove by induction on the depth of the tree.

Base case: the theorem is clearly true for ` = 0 (i.e. a single point space).

32

Inductive step: suppose the theorem is true for weighted σ-HSTs of depth ` − 1, and let T be
a weighted σ-HST of depth `, rooted at r. Let wi be the distance to the i-th child of r, and let
w = maxiwi. Given κ, consider some optimal solution for T that achieves value Optcost(r, κ,∞).
We also denote the total cost Optcost(r, κ,∞) by Optcost(r, κ), and g(κ,∞) by g(κ). Let κ∗i
be optimal vectors for the children pi of r corresponding to this solution. Since κ∗i determines
Optcost(r, κ), by (43) we have

Optcost(r, κ) =
∑
i

(Optcost(pi, κ
∗
i) + wi · g(κ∗i)) .

By (44), for each child i, Optcost(pi, κ
∗
i) ≥ Hitcost(i, κ∗i) − 2wi · g(κ∗i)/(σ − 1), where we denote

Hitcost(i, κ′) =
∑

t h
t
i(κ
′(t)). Thus,

Optcost(r, κ) ≥
∑
i

(
Hitcost(i, κ∗i) + wi ·

(
1− 2

σ − 1

)
g(κ∗i)

)
.

Multiplying throughout by (σ − 1)/(σ − 3), which is at most 1 + 3/σ (as σ ≥ 9), implies∑
i

(Hitcost(i, κ∗i) + wi · g(κ∗i)) ≤
σ − 1

σ − 3
·Optcost(r, κ) ≤

(
1 +

3

σ

)
·Optcost(r, κ). (45)

Consider the fractional allocation instance A running at r in our algorithm and let {xti,j}i,j be its
solution at time step t. (Since there is only a single quota pattern κ(r) at the root, we assume that
there is only one instance running, and keep it notationally convenient.) By Theorem 14 and by
(45), the hit cost incurred by A satisfies

∑
t

d∑
i=1

k∑
j=0

xti,jh
t
i(j) ≤ (1 + ε)

(
d∑
i=1

Hitcost(i, κ∗i) +
d∑
i=1

wi · g(κ∗i) + w · g(κ)

)

≤ (1 + ε)

(
1 +

3

σ

)
Optcost(r, κ) + (1 + ε)w · g(κ), (46)

and the movement cost satisfies∑
t

d∑
i=1

wi
∑
j

|yti,j − yt−1
i,j | ≤ O(log(k/ε))

(
d∑
i=1

Hitcost(i, κ∗i) +
d∑
i=1

wi · g(κ∗i) + w · g(κ)

)
≤ O(log(k/ε))(Optcost(r, κ) + w · g(κ)). (47)

Now, recall that each of the children p1, . . . , pd of r is running a convex combination on allocation
instances Λti, the quota pattern of which is determined by {xti,j}i,j . So, the hit costs and movement
costs of A (i.e. left hand sides of (46) and (47)) can be expressed alternately as follows. Since
the quota patterns at pi maintain the invariant (40) throughout the algorithm, the total hit cost
accumulated by A can be expressed as

∑
t

d∑
i=1

k∑
j=0

xti,jh
t
i(j) =

∑
t

d∑
i=1

k∑
j=0

∑
s∈Λti,κ

t
s(t)=j

λtsh
t
i(j)

=
d∑
i=1

∑
s∈Λ∞i

λ∞s Hitcost(i, κ∞s). (48)

33

Henceforth, we use Λi and κs to denote Λ∞i and κ∞s . By our cost preserving procedure for updating
κts when xt−1

i,j changes to xti,j , the movement cost incurred by A can be expressed as

∑
t

d∑
i=1

wi
∑
j

|yti,j − yt−1
i,j |) =

d∑
i=1

wi
∑
t

∑
s∈Λti

λts|κts(t)− κts(t− 1)|

=
d∑
i=1

wi
∑
s∈Λi

λsg(κs). (49)

Let us now consider the overall movement cost incurred by the convex combination of the allocation
instances. This is equal to the movement cost for A (running at the root) plus the sum movement
costs incurred within p1, . . . , pd. By the induction hypothesis, the movement cost for each of these
recursive algorithms that are run on subtrees T (pi) with quota pattern κs is at most

β`−1

(
Optcost(pi, κs) +

wi
σ − 1

· g(κi)

)
.

Thus, the total recursive cost is at most

d∑
i=1

∑
s∈Λi

λsβ`−1

(
Optcost(pi, κs) +

wi
σ − 1

· g(κs)

)

≤
d∑
i=1

∑
s∈Λi

λsβ`−1

(
Hitcost(i, κs) +

3wi
σ − 1

· g(κs)

)
(50)

≤ (1 + ε)β`−1

((
1 +

3

σ

)
Optcost(r, κ) + w · g(κ)

)
+

d∑
i=1

∑
s∈Λi

λsβ`−1
3wi
σ − 1

· g(κs). (51)

Here, (50) follows as Optcost(pi, κs) ≤ Hitcost(i, κs) + 2wi/(σ − 1) by (44), and (51) follows from
(48) and (46). Now, the total cost of movement of servers across the subtrees p1, . . . , pd is

d∑
i=1

wi
∑
s∈Λi

λsg(κs). (52)

Adding up the costs from (51) and (52), the total cost incurred by the algorithm is at most

(1 + ε)β`−1

((
1 +

3

σ

)
Optcost(r, κ) + w · g(κ)

)
+

d∑
i=1

∑
s∈Λi

λs

(
1 +

3β`−1

σ − 1

)
wi · g(κs). (53)

By (49) and (47) we have

d∑
i=1

wi
∑
s∈Λi

λsg(κs) ≤ O(log(k/ε)) (Optcost(r, κ) + w · g(κ)) . (54)

Plugging (54) into (53) implies that the total cost is at most(
β`−1 · γ +O (log(k/ε))

)(
Optcost(r, κ) + w · g(κ)

)
,

34

where

γ = (1 + ε)

(
1 +

3

σ

)
+O

(
log(k/ε)

σ

)
.

Thus, the claimed result follows.

5 Weighted HSTs and Online Rounding

In this section, we show how one can embed a σ-HST into a small depth weighted σ-HST with
constant distortion, i.e., we prove Theorem 8. Also, we present an online rounding procedure for
the fractional k-server problem on an (un-weighted) σ-HST, that is, we establish Theorem 7.

5.1 Embedding σ-HSTs into Weighted σ-HSTs:

Theorem 8. Let T be a σ-HST with n leaves, but possibly arbitrary depth. Then, T can be
transformed into a weighted σ-HST T̃ such that: the leaves of T̃ and T are identical, T̃ has depth
O(log n), and any leaf to leaf distance in T is distorted in T̃ by a factor of at most 2σ/(σ − 1).

Proof. For a given rooted tree T ′, we say that it is balanced if: (1) there is no child p of the root
such that the subtree T ′(p) (rooted at p) contains more than half of the nodes of T ′, and (2) each
subtree T ′(p′), rooted at a child p′ of the root, is balanced as well. It is easy to see that if a balanced
T ′ has n leaves then its depth is O(log n).

We now present a procedure that contracts some of the edges of T and yields a weighted σ-HST
T ′ such that: (a) T ′ is balanced, and (b) for any leaf-to-leaf path in T , at least one (out of two) of
the longest edges on this path has not been contracted in T ′.

The procedure works as follows. Let r be the root of T and p1, . . . , pd be its children. We first
recursively transform each of the trees T (pi) rooted at pi. Next, we check if there is a child pi such
that T (pi) contains more than half of the nodes of T . (Note that there can be at most one such
child.) If not, then T (with modified T (p1), . . . , T (pd)) is the desired T ′. Otherwise, T ′ is the tree
T with the edge that connects pi to r contracted.

It is easy to see that the tree T ′ obtained by the above procedure is indeed balanced and also
the lengths of the edges on any root-to-leaf part decrease at rate of at least σ. Thus, T ′ is a
weighted σ-HST and (a) holds. Now, to prove (b), let us inductively assume that it holds for all
the transformed subtrees T (pi). We prove it for the transformed T . Consider a leaf-to-leaf path in
T . If the path is contained entirely in one of the subtrees T (pi), then we are done by our inductive
assumption. Otherwise, the path contains two edges incident to the root r. As T is a σ-HST, these
two edges must be the longest ones on this path. Thus, as the procedure could contract only one
of them, (b) follows as well.

Now, clearly, taking T̃ to be T ′ satisfies the first two desired properties of T̃ , as stated in the
theorem. To prove that the last one holds too, we note that the length of any leaf-to-leaf path can
only decrease in T̃ (as we only contract edges). However, as we retain at least one of the longest
edges, we have that the worst case distortion it incurs is at most:

2

σ`
·
∑̀
j=0

σj ≤ 2 ·
∑̀
j=0

1

σj
≤ 2σ

σ − 1
,

where σ` is the length of the longest edge on the path. The theorem thus follows.

35

5.2 Rounding the Fractional k-server Solution Online

We now show how to obtain an online randomized (integral) k-server algorithm from a fractional
k-server algorithm, when the underlying metric corresponds to a σ-HST T . The competitiveness of
the obtained algorithm will only be an O(1) factor worse than the competitiveness of the fractional
algorithm, provided σ > 5. The rounding procedure builds on ideas in [11] which were developed
in the context of the finely competitive paging problem, and extends those ideas from a uniform
metric to HSTs.

Let 1, . . . , n denote the leaves of the σ-HST T . Recall that the fractional solution to the k-server
problem specifies at each time t the probability xti of having a server at leaf i. The variables xti
satisfy

∑
i x

t
i = k.8 When these probabilities change at each time step t, the movement cost paid by

the fractional algorithm is equal to the earthmover distance between the distribution xt−1 and xt.
In contrast, an execution of a randomized algorithm can be viewed as an evolution of a distribution
over k-tuples of leaves. (There is no point in having more than one server at a leaf.) To make this
more precise, let us define a configuration to be a subset C of {1, . . . , n} of size exactly k. The state
St at a given time t of a randomized k-server algorithm is specified by a probability distribution
µSt on the configurations, where µS(C) denotes the probability mass of configuration C in state S.

Now, we say that a state S is consistent with a fractional state x if,

(consistency) for each i ∈ [n]
∑

C:i∈C µS(C) = xi, (55)

i.e., if the marginal probabilities of the state S coincide with x.
We therefore see that in order to round a fractional algorithm to a randomized algorithm, we

need to devise a way of maintaining (in an online manner) a sequence of states S0, S1, . . . that
are always consistent with the corresponding states x0, x1, . . . of the fractional algorithm, and such
that the cost of the maintenance is within an O(1) factor of the movement cost of the fractional
algorithm. More precisely, our goal is to establish the following result.

Theorem 24. Let T be a σ-HST with n leaves, σ > 5, and let x0, x1, . . . be a sequence of states of a
fractional k-server algorithm. There is an online procedure that maintains a sequence of randomized
k-server states S0, S1, . . . with the following properties:

1. At any time t, the state St is consistent with the fractional state xt.

2. If the fractional state changes from xt−1 to xt at time t, incurring a movement cost of ct,
then the state St−1 can be modified to a state St while incurring a cost of O(ct).

The key idea in bounding the maintenance cost of our rounding in Theorem 7 is to require that
the states St that we produce are not only consistent with xt, but also each configuration in the
support of St does not deviate much from the fractional state xt. To this end, we introduce the
following additional property for k-server states.

For a node p of T and a fractional state x, let xp =
∑

i∈T (p) xi be the fractional amount of servers
that x has on the leaves of the subtree T (p) rooted at p. Also, let np(C) = C ∩ T (p) denote the
number of servers in configuration C on leaves of T (p). We say that a configuration C is balanced
with respect to x if np(C) ∈ {bxpc, dxpe} for every node p. Now, we say that a k-server state S

8Note that, in principle, the definition of a fractional solution allows us to have
∑
i x

t
i to be strictly smaller than

k. However, as the starting configuration x0 has exactly k servers, it is easy to modify our fractional solution so that
it always has exactly k servers, while not increasing its movement cost.

36

is balanced with respect to x if every configuration in its support (i.e., with non-zero probability
mass) is balanced with respect to x. That is, for all p and C for which µS(C) > 0,

bxpc ≤ np(C) ≤ dxpe. (56)

Now, our approach to making the states we work with balanced is facilitated by the following
definition. Let x be a fractional state and let S be some k-server state consistent with x (but S
might be not balanced with respect to x). We define the balance gap, G(S, x) of S, (with respect
to x) to be:

G(S, x) =
∑
p

W (p)
∑
C∈S

µS(C) min (|np(C)− bxpc|, |np(C)− dxpe|) . (57)

Here, W (p) denotes the length of the edge from p to its parent. Clearly, when S is balanced with
respect to x, its balance gap is zero. Intuitively, the balance gap measures the distance of the state
S from being balanced. This intuition is made concrete by the following lemma.

Lemma 25. Let x be a fractional state and let S be a k-server state on the leaves of a σ-HST T ,
with σ > 5, which is consistent with x (but not necessarily balanced with respect to it). Then, S
can be converted to another state S′ which is both consistent and balanced with respect to x, while
incurring a cost of O(G(S, x)).

We will prove Lemma 25 later. First we show show how Theorem 24 follows from it.

Proof of Theorem 24. Consider a fractional state x that changes to some other fractional state x′,
and let S be a k-server state which is both consistent and balanced with respect to x. As S0 (the
state initially at time t = 0) is consistent and balanced with respect to x0, it is easy to see that
to establish the theorem, it suffices to show that for any x, x′, and S as above, there is a k-server
state S′ which is consistent and balanced with respect to x′, and such that the cost of changing the
state S to state S′ is within O(1) factor of the cost of changing the state x to x′. Furthermore, it
is enough to restrict oneself to the case in which x′ is obtained from x by applying an elementary
move, i.e. xi, for some leaf i, is increased by δ and xi′ , for some other leaf i′, is decreased by δ,
where δ can be chosen to be infinitesimally small.

In light of this, we can focus on proving the existence of such S′. To this end, let p denote the
least common ancestor of i and i′. Note that in this case the fractional cost of changing x to x′ is
at least 2δw(p), where w(p) = W (p)/σ is the length of the edges from p to its children.

Consider now the following transformation of the state S. First, we add the leaf i to a probability
mass of δ on arbitrarily chosen configurations in S that do not contain i already. Next, we remove i′

from some probability mass δ of configurations containing i′. (Note that the existence of sufficient
mass of each type of configurations follows from the consistency property of S with x.) Let S̃ be
the resulting state.

Before proceeding, we note that as δ can be taken to be arbitrarily small, we can restrict our
discussion to the case in which i is added to a mass of δ of a particular configuration C, and i′ is
removed from a mass of δ of a particular configuration C ′.

Now, to continue the proof, we observe that S̃ is consistent with x′. However, the modified
configurations C and C ′ that S̃ contains are not legal anymore as they do not consist of exactly k
leaves. Also, S̃ might be unbalanced with respect to x′.

37

We show how we can modify S̃ to fix these shortcomings. To this end, we note that as C contains
i, and it was balanced with respect to x prior to adding i, it must hold now that np(C) ≥ bxpc+ 1.
Similarly, for C ′, it must hold that np(C ′) ≤ bxpc < bxpc + 1 = np(C). Thus, by the pigeon hole
principle, there must exist a leaf j of T (p) which is contained in C, but not in C ′. Let us modify
S̃ by removing j from C and adding it to C ′. Clearly, this makes all the configurations in S̃ legal
again, keeps S̃ consistent with x′, and the total movement cost corresponding to this modification
(due to deleting i, adding i′, and swapping j) is at most 4δw(p)σ/(σ − 1) = O(δw(p)), for σ > 5,
which is within an O(1) factor of the cost of changing x to x′.

Unfortunately, S̃ might still be unbalanced with respect to x′. To bound the imbalance, let us
first consider the case in which bxqc = bx′qc and dxqe = dx′qe for all nodes q. This implies that

all the configurations in S̃ other than the modified configurations C and C ′ are already balanced
with respect to x′ as they were balanced with respect to x. Now, we note that xq 6= x′q only for
nodes q that are on the path between i and i′ (but excluding p). Similarly, nq(C) and nq(C ′) could
change only for nodes on the path from p to i, i′, or j (but, again, excluding p). Therefore, as both
C and C ′ were initially balanced with respect to x, we can conclude that the total imbalance gap
G(S̃, x) = G(S̃, x′) of S̃ after our modifications is at most:

3 · 2δw(p)

(
1 +

1

σ
+

1

σ2
+ . . .

)
= O(δw(p)).

Thus, by applying Lemma 25 to S̃, we obtain a state S′ that is consistent and balanced with respect
to x′ and the cost of this procedure is O(δw(p)), as desired.

Now, it remains to deal with the case in which either bxqc 6= bx′qc, or dxqe 6= dx′qe, for some
nodes q. To this end, we note that by taking δ to be small enough (but non-zero), we can ensure
that for each q for which at least one of these two inequalities holds, it must be the case that
either xq or x′q is an integer. In the former case, we have that for all the configurations C ′′ in S
that have non-zero mass, nq(C ′′) = xq = bxqc = dxqe and thus bx′qc ≤ nq(C

′′) ≤ dx′qe. In the
latter case, as |xq − x′q| ≤ δ and for every relevant configuration C ′′ in S, bxqc ≤ nq(C

′′) ≤ dxqe,
the total probability mass of configurations C ′′ in S, such that nq(C ′′) = bxqc < bx′qc = x′q or
nq(C

′′) = dxqe > dx′qe = x′q, can be at most δ.

As a result, we see that the total probability mass of configurations in S̃ that are not balanced
with respect to x′ is at most 3δ (the contribution of 2δ comes from the modified configurations C
and C ′). Thus, by calculating the imbalance gap similarly to what we did before, we can show that
G(S̃, x′) is O(δw(p)), and once again use Lemma 25 to obtain the desired S′. This concludes the
proof of the theorem.

It remains to prove Lemma 25.

Proof of Lemma 25. Let us call a node p in our σ-HST T imbalanced if∑
C∈S

µS(C) min(|np(C)− bxpc|, |np(C)− dxpe|) > 0.

If no node is imbalanced, then clearly G(S, x) = 0, and we are already done, so we assume that
this is not the case. Let p be an imbalanced nodes which is at the highest level of T (breaking ties
arbitrarily). We note that p cannot be the root r of T , as each configuration has exactly k servers,
and xr = k.

38

Consider now a configuration C for which µS(C) > 0 and np(C) /∈ {bxpc, dxpe} and let us
assume that np(C) < bxpc (the other case can be treated similarly). As S is consistent with x,∑

C′′ µS(C ′′)np(C
′′) = xp, and so there must be some other configuration C ′ with µS(C ′) > 0 such

that np(C ′) ≥ bxpc+ 1. So, in particular, we have np(C ′)− np(C) ≥ 2.
Now, let p̃ denote the parent of p in T (recall that p is not the root). As we choose p to be an

imbalanced node at the highest possible level, p̃ must be balanced, and hence |np̃(C ′)−np̃(C)| ≤ 1.
But, since np(C ′)−np(C) ≥ 2, it implies the existence of some other child p′, p′ 6= p, of p̃ such that
np′(C

′) < np′(C).
Therefore, by the pigeon hole principle, there must exist a leaf i in the subtree T (p) rooted at

p which is contained in C ′, but not in C. Similarly, C must contain a leaf i′ in T (p′) which is not
contained in C ′. Let δ = min(µS(C), µS(C ′)) (note that δ > 0). Consider a modification of S in
which we take any arbitrary probability mass δ of configurations C and replace i′ by i in them.
Next, we take any arbitrary probability mass δ of configurations C ′ and replace i by i′ in them.

Let us summarize the properties satisfied by S after this modification. First, the state remains
consistent with the fractional solution x, because the marginals of the leaves i and i′ have not
changed. Second, since neither np̃(C) nor np̃(C ′) have changed, p̃ remains balanced. Moreover, the
only nodes for which the imbalance could have changed are on the path from i to p and i′ to p′.
Third, replacing i′ with i (in a δ measure of C) increases np(C) by 1 for these configurations, and
replacing i with i′, leaves the quantity np(C

′) to be of value at least bxpc. Together, this implies
that the imbalance of p decreases by at least δ. Finally, as np′(C) > np′(C

′) before the modification,
the imbalance

∑
C′′∈S µS(C ′′) min(|np′(C ′′)− bxp′c|, |np′(C ′′)− dxp′e|) of p′ can only decrease.

Now, if we analyze the change in the imbalance gap of S, in the worst case, the imbalance of
every node from p to i (excluding p) could have increased by 2δ due to the addition of i in C or
removal of i from C ′. Similarly, the imbalance of every node from p′ to i′ (excluding p′) could have
increased by up to 2δ. Together with the above observations, this implies that the imbalance gap
of S decreases by at least

W (p)δ − 4δw(p)

(
1 +

1

σ
+

1

σ2
+ . . .

)
= W (p)δ

(
σ − 5

σ − 1

)
= Ω(W (p)δ),

where the last inequality uses the fact that σ > 5.
On the other hand, as both i and i′ lie in T (p̃), the movement cost incurred in the above

procedure is at most 4δw(p̃)(σ/(σ−1)) = 4δW (p) σ
(σ−1) , which is within O(1) factor of the reduction

in the imbalance gap. The lemma follows by applying the above steps repeatedly until the imbalance
gap reaches zero.

References

[1] Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of randomized
paging algorithms. Theoretical Computer Science, 234(1-2):203–218, 2000.

[2] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. A primal-dual randomized algo-
rithm for weighted paging. In FOCS’07: Proceedings of the 48th Annual IEEE Symposium on
Foundations of Computer Science, pages 507–517, 2007.

39

[3] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. Towards the randomized k-server
conjecture: A primal-dual approach. In SODA’10: Proceedings of the 21st Annual ACM-
SIAM Symposium on Discrete Algorithms, 2010.

[4] Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. Unfair metrical task systems on
hsts and applications. In ICALP’10: Proceedings of the 37th International Colloquium on
Automata, Languages and Programming, 2010.

[5] Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.
In FOCS’96: Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer
Science, pages 184–193, 1996.

[6] Yair Bartal. On approximating arbitrary metrices by tree metrics. In STOC’98: Proceedings
of the 30th Annual ACM Symposium on Theory of Computing, pages 161–168, 1998.

[7] Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog(n)-competitive algo-
rithm for metrical task systems. In STOC’97: Proceedings of the 29th Annual ACM Symposium
on Theory of Computing, pages 711–719, 1997.

[8] Yair Bartal, Béla Bollobás, and Manor Mendel. A ramsy-type theorem for metric spaces and
its applications for metrical task systems and related problems. In FOCS’01: Proceedings of
the 42nd Annual IEEE Symposium on Foundations of Computer Science, pages 396–405, 2001.

[9] Yair Bartal and Eddie Grove. The harmonic k-server algorithm is competitive. Journal of the
ACM, 47(1):1–15, 2000.

[10] Yair Bartal, Nathan Linial, Manor Mendel, and Assaf Naor. On metric ramsey-type phenom-
ena. In STOC’03: Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
pages 463–472, 2003.

[11] Avrim Blum, Carl Burch, and Adam Kalai. Finely-competitive paging. In FOCS’99: Proceed-
ings of the 40th Annual Symposium on Foundations of Computer Science, page 450, 1999.

[12] Avrim Blum, Howard J. Karloff, Yuval Rabani, and Michael E. Saks. A decomposition theorem
and bounds for randomized server problems. In FOCS’92: Proceedings of the 31st Annual IEEE
Symposium on Foundations of Computer Science, pages 197–207, 1992.

[13] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

[14] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server problems.
SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.

[15] M. Chrobak and L. Larmore. An optimal on-line algorithm for k-servers on trees. SIAM
Journal on Computing, 20(1):144–148, 1991.

[16] A. Coté, A. Meyerson, and L. Poplawski. Randomized an optimal on-line algorithm for k-server
on hierarchical binary trees. In STOC’08: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, pages 227–234, 2008.

40

[17] B. Csaba and S. Lodha. A randomized on-line algorithm for the k-server problem on a line.
Random Structures and Algorithms, 29(1):82–104, 2006.

[18] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating arbi-
trary metrics by tree metrics. In STOC’03: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, pages 448–455, 2003.

[19] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. Journal of Computer and
System Sciences, 48(3):410–428, 1994.

[20] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel Dominic Sleator, and
Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

[21] Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems and appli-
cations. SIAM Journal on Computing, 32(6):1403–1422, 2003.

[22] Edward F. Grove. The harmonic online k-server algorithm is competitive. In STOC’91:
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages 260–266,
1991.

[23] Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. Journal of the
ACM, 42(5):971–983, 1995.

[24] M. Manasse, L.A. McGeoch, and D. Sleator. Competitive algorithms for server problems.
Journal of Algorithms, 11:208–230, 1990.

[25] Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized paging algorithm.
Algorithmica, 6(6):816–825, 1991.

[26] Steven S. Seiden. A general decomposition theorem for the k-server problem. In ESA’01:
Proceedings of the 9th Annual European Symposium on Algorithms, pages 86–97, 2001.

[27] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

A Proof of Lemma 11

Consider first the simpler case of the fix stage. Here the variables evolve according to

dyτi,j
dτ

=

{
1
wi

(
yτi,j + β

)
yτi,j < 1

0 yτi,j = 1.

As the derivative of yτi,j only depends on yτi,j and is continuous, the function yτi,j is well defined. As
the derivative is 0 when yτi,j = 1, and non-negative otherwise, it ensures that yτi,j always stays in
the range [0, 1]. Finally, the monotonicity property holds here, as it holds initially when τ = 0, and
whenever yi,j ≤ yi,j′ for some j < j′, we have that dyτi,j/dτ ≤ dyτi,j′/dτ , unless yτi,j′ = 1, in which
case monotonicity holds trivially.

41

We now consider the hit stage. Recall that configuration yηi,j , for each (i, j), evolves according
to Equation (13), which we reproduce here for convenience:

dyηi,j
dη

=

{
0 if (i, j) /∈ Aη,
1
wi

(
yηi,j + β

)
·
(
N(η)− αληi,j

)
otherwise.

(58)

In the above, the set Aη denotes the active coordinates at time η (cf. Definition 9) and the
normalization factor N(η) can be expressed as (cf. (14))

N(η) =

0 if

∑
i,j y

η
i,j > kd− κ(t),∑

(i,j)∈Aη
1
wi

(yηi,j+β)·αλ
η
i,j∑

(i,j)∈Aη
1
wi

(yηi,j+β)
otherwise (i.e. if

∑
i,j y

η
i,j = kd− κ(t)).

(59)

First, we show that during the hit stage blocks never split. To this end, we note that when two
blocks merge, their y-values are identical, and since we also modify λη to be identical for these
blocks, all the variables contained in the merged block evolve in the same way from that point on,
as desired. (Note that we do not assume here that the trajectory yη is well defined and unique, we
just argue that any trajectory compatible with our definition of derivatives cannot split blocks.)

Now, we proceed to analyzing the properties of the evolution described by Equations (58) and
(59). As a first step, let us prove the following claim that will be helpful later.

Claim 26. Consider a feasible configuration yη
′
, for η′ ∈ [0, 1], a subset of coordinates A, and a

hit cost vector λ. Define for any η ≥ η′,

NA(η) =

∑
(i,j)∈A u

η
i,j · αλi,j∑

(i,j)∈A u
η
i,j

,

where uηi,j = 1
wi

(
yηi,j + β

)
. Now, if we make the configuration yη

′
evolve according to

dyηi,j
dη

=

{
0 if (i, j) /∈ A,
1
wi

(
yηi,j + β

)
· (NA(η)− αλi,j) otherwise

,

then we have that NA(η) does not increase, i.e., NA(η) ≤ NA(η′) for any η ≥ η′.

Proof. Let us fix a η ≥ η′ and denote η+ = η+ dη. We will prove that NA(η+) ≤ NA(η), which, in
turn, implies our claim. To this end, note that one can view NA(η) as a weighted average, over all
coordinates in A, of the value of αλi,j , where uηi,j is the weight which we attribute to coordinate
(i, j) at time η.

Now, the key observation is that the way the yi,js evolve implies that yη
+

i,j ≥ y
η
i,j if αλi,j ≤ NA(η),

and yη
+

i,j ≤ yηi,j if αλi,j ≥ NA(η). So, as the weights uηi,j are directly proportional to yηi,j , we can
conclude that during our evolution, the weights of coordinates that have a value of αλi,j above the

average value NA(η) (i.e. uη
+

i,j ≤ u
η
i,j in this case) can only decrease, and the weights of coordinates

that have a value of αλi,j which is at most the average (i.e., we have uη
+

i,j ≥ u
η
i,j for such (i, j)) can

only increase. As a result, we can express NA(η+) as

NA(η+) =

∑
(i,j)∈A u

η+

i,j · αλi,j∑
(i,j)∈A u

η+

i,j

=

∑
(i,j)∈A u

η
i,j · αλi,j +

∑
(i,j)∈A αλi,j∆i,j∑

(i,j)∈A u
η
i,j +

∑
(i,j)∈A ∆i,j

, (60)

42

where ∆i,j = uη
+

i,j − u
η
i,j and, by our discussion above, we have that ∆i,j ≥ 0 if αλi,j ≤ NA(η), and

∆i,j ≤ 0 otherwise.
Now, if the right hand side of (60) is at most NA(η), then we are done. Otherwise, we must

have that ∑
(i,j)∈A u

η
i,j · αλi,j∑

(i,j)∈A u
η
i,j

> NA(η), (61)

as it is easy to check that if a+d·t
b+t > c, then also a

b > c, as long as t and d are such that t ≥ 0 if
d ≤ c, and t ≤ 0 otherwise.

But, the left hand side of (61) is by definition equal to NA(η). So, the obtained contradiction
implies that indeed NA(η+) ≤ NA(η), and the claim follows.

Now, observe that the set Aη, as well as N(η), depend only on the state yη and the hit cost
vector λη. As a result, both Aη and N(η) can, in principle, vary drastically between points of time.
However, as we show in the following claim, “locally” they tend to behave in a regular manner.

Claim 27. For any η′ ∈ [0, 1) and feasible configuration yη
′
, there exists an η′′, η′ < η′′ ≤ 1, such

that:

(a) Aη = Aη
′

for each η ∈ [η′, η′′), i.e., the set Aη of active coordinates does not change for η < η′′;

(b) λη = λη
′

for any η ∈ [η′, η′′), i.e., there are no block merges until time η′′;

(c) the sum
∑

i,j y
η
i,j is bigger than kd−κ(t) for all η < η′′, unless it was already equal to kd−κ(t)

at time η′;

(d) the configuration yη
′′

is well defined and feasible for η ∈ [η′, η′′] (note that this interval contains
η′′).

Furthermore, one can assume η′′ is maximal, that is, unless η′′ is already equal to 1, there exists
no larger value of η′′ for which the above holds.

For future reference, we call η′′, defined as in the above claim, the horizon of yη
′
.

Proof of Claim 27. Let us define a new process for the evolution of yηi,j in a suitably small neigh-
borhood of η′ as follows:

dyηi,j
dη

= =

{
1
wi

(
yηi,j + β

)
·
(
Ñ(η)− αλη

′

i,j

)
if (i, j) ∈ Aη′

0 otherwise
(62)

where

Ñ(η) =

0 if

∑
i,j y

η′

i,j > kd− κ(t),∑
(i,j)∈Aη′

1
wi

(yηi,j+β)αλ
η′
i,j∑

(i,j)∈Aη′
1
wi

(yηi,j+β)
otherwise (i.e. if

∑
i,j y

η′

i,j = kd− κ(t)).
(63)

While the new process looks similar to the original one, there are some crucial differences. First, we
do not care if a variable yηi,j either exceeds 1 or becomes negative, i.e., the active set is not updated

as η progresses and remains the set Aη
′
. Second, the cost vector is not updated and it remains λη

′
,

43

i.e., blocks are not merged and the monotonicity requirement (4) are ignored. Third, the value of
Ñ(η) is not changed once the value of

∑
i,j y

η
i,j hits the quota. If

∑
i,j y

η′

i,j > kd − κ(t) at time η′,

Ñ(η) will be always 0. As a result, the latter sum might become less than kd− κ(t) at some point.
Now, the key observation that makes this new process useful to us is that it is identical to our

original process, as long as the evolving configuration is still feasible, and no coordinate becomes
active and changes in the original process. More precisely, the trajectories of the two processes
coincide as long as in the configuration yη evolving with respect to this new process:

(1) yηi,j is in [0, 1] for each (i, j) ∈ Aη′ . (Otherwise, a coordinate (i, j) violating this condition would
have already become inactive in the original process.), or

(2) Ñ(η)−αλη
′

i,j is non-negative (respectively non-positive) for (i, j) /∈ Aη′ with yη
′

i,j = 1 (respectively

yη
′

i,j = 0). (Otherwise, a coordinate (i, j) violating this condition would have already become
active and would have changed in the original process.), or

(3) the monotonicity condition holds, i.e., yηi,j ≤ yηi,j+1 for each (i, j). (Otherwise, a block merge
would have already happened in the original process.), or

(4) the server quota is obeyed, i.e.,
∑

i,j y
η
i,j ≥ kd − κ(t). (Otherwise, N(η) would have already

changed so as to guarantee that the number of servers stays at the quota.)

Let η` for ` ∈ {1, 2, 3, 4} be the last η ≥ η′ for which the `-th condition is satisfied in the interval
[η′, η]. Also, let η0 (respectively η1) be the first time η ≥ η′ in which yηi,j = 0 (respectively, yηi,j = 1)

for (i, j) ∈ Aη′ (respectively (i, j) /∈ Aη′), and Ñ(η)− αλη
′

i,j = 0. As in the new process Ñ(η) – and
thus all the derivatives and the trajectory of yη – are continuous and bounded in the our interval
of interest9, such maximal η`s and η0, η1 always exists. Let us take η′′ = min{min` η

`, η0, η1, 1}.
Note that this implies that yη is well defined and feasible for any η ∈ [η′, η′′] – so, condition (d)
is satisfied. Furthermore, it is not hard to verify that all of the conditions (a)-(c) hold for such
η′′, and that this η′′ ≤ 1 is indeed maximal with respect to satisfying these conditions. So, if we
manage to prove that also η′′ > η′, our claim will follow.

To this end, observe that by applying Claim 26 with A = Aη
′

and λ = λη
′
, we see that Ñ(η)

can only decrease for η ≥ η′. Therefore, all the derivatives (62) in this process can only decrease
too. This implies, in particular, that if some variable stops increasing (i.e., its derivative becomes
non-positive) at some point, it will never increase again.

Now, note that if (i, j) ∈ Aη′ then

• if yη
′

i,j ∈ (0, 1), then, as the derivatives are bounded, it must be the case that yηi,j ∈ (0, 1) until
some time η > η′;

• if yη
′

i,j = 0, then its derivative Ñ(η′) − αλη
′

i,j at time η′ has to be strictly positive (otherwise,
(i, j) would be inactive at time η′) and thus yηi,j (respectively its derivative) has to stay
non-negative (respectively positive) until some time η > η′ too;

9More precisely, Ñ(η) is continuous and bounded, as long as each yηi,j is bounded away from −β. However, we are
interested in only analyzing the process as long as all the variables stay non-negative, so for the sake of our analysis,
Ñ(η) is indeed continuous and bounded.

44

• finally, if yη
′

i,j = 1, then its derivative Ñ(η′)− αλη
′

i,j at time η′ has to be non-positive (as oth-

erwise, (i, j) /∈ Aη′). However, by our discussion above, it means that neither this derivative,
nor yηi,j , will ever increase again.

Thus, we can infer from the above that both η1 and η0 are strictly larger than η′.
Next, let us focus on some (i, j) /∈ Aη′ . We have that

• if yη
′

i,j = 0, then Ñ(η′)−αλη
′

i,j has to be non-positive (otherwise, (i, j) would be active at time

η′) and as Ñ(η) never increases, Ñ(η′)− αλη
′

i,j will never become positive;

• if yη
′

i,j = 1, then Ñ(η′)−αλη
′

i,j at time η′ has to be strictly positive (as otherwise, (i, j) ∈ Aη′).
So, this quantity has to remain positive for some time η > η′.

Thus, we see that both η2 and η1 are also strictly larger than η′.
Observe now that if yη

′

i,j = yη
′

i,j+1 for some (i, j), (i, j+ 1) ∈ Aη′ , we must have that λη
′

i,j ≥ λ
η′

i,j+1.
Otherwise, the blocks to which (i, j) and (i, j + 1) belong would have been merged at time η′.
This means that the derivative of yηi,j is always bounded from above by the derivative of yηi,j+1.
Thus, such a pair of coordinates will never violate the monotonicity property. On the other hand,
if yηi,j < yηi,j+1, then, as the derivatives are bounded, there always exists η > η′ for which this strict
inequality still holds (and thus monotonicity is not violated). Hence, we get that η3 > η′.

Finally, to see that η4 > η′ as well, we note that if
∑

i,j y
η′

i,j = kd− κ(t), then, by design, it will
remain equal henceforth. If, however, the latter sum is larger than kd − κ(t) at time η′, then it
would still remain so for some η > η′.

Thus, indeed we have η′′ = min{min` η
`, η0, η1, 1} > η′, concluding the proof of the claim.

In light of the above claim, one can consider obtaining a feasible configuration y1 from the
starting (feasible) configuration y0 by simply gluing together the trajectories corresponding to the
horizons. More precisely, one could start with η0 = 0, and for each ηs, with s ≥ 0 and ηs < 1, define
ηs+1 to be the horizon of yηs . Note that, as we start with the feasible configuration y0, Claim 27
implies that all yηs are well defined and feasible too.

Now, the only reason why the above approach might not end up giving us the desired feasible
configuration y1 is that, a priori, it is not clear whether the sequence {ηs}s ever reaches 1. That
is, even though we know that η0 = 0 and ηs+1 > ηs, it might still be possible that this sequence
converges without ever reaching 1, and thus there is no s with ηs = 1.

In order to rule out this possibility, we will prove that the total number of horizons is always
finite. Observe that each horizon can be associated with at least one of the following events: (a)
the set of active coordinates changes, or (b) a block merge occurs, or (c) the number of servers hits
the quota. Thus, it suffices to show that the total number of such events is bounded.

To this end, let us note that in our evolution, once
∑

i,j y
η
i,j becomes equal to kd− κ(t), N(η)

is chosen so that
∑

i,j dy
η
i,j/dη = 0. So, once we hit the quota we stay there throughout the rest of

the hit stage. Hence, there can be at most one event of type (c). Also, as we have already argued,
during our evolution blocks never split once they are formed, and thus the total number of block
merges (i.e., events of type (b)) can be at most k.

It remains to bound the number of events of type (a), i.e., the ones corresponding to vari-
ables becoming active/inactive. For notational convenience, let us say that a coordinate (i, j)
0-inactivates (respectively, 1-inactivates) at time ηs, for some s ≥ 1, if N(ηs) ≤ αληsi,j (respectively,

45

N(ηs) > αληsi,j) and yηsi,j = 0 (respectively, yηsi,j = 1), but (i, j) was active at time ηs−1. We prove
the following claim.

Claim 28. N(η) can increase only at a horizon, i.e., for any s ≥ 0 with ηs < 1, N(ηs) ≥ N(η)
for η ∈ [ηs, ηs+1). Furthermore, if N(η) indeed increases at time ηs+1, then at ηs+1 we have an
occurrence of either a block merge, or the quota is hit, or a 1-inactivation of some (i, j) with yηsi,j < 1.

Proof. First, consider the case where at time ηs the number of servers is still below the quota. By
(59), it means that N(η) = 0 = N(ηs), for η ∈ (ηs, ηs+1), and N(ηs+1) = 0 unless the quota is hit
at time ηs+1. So, the claim follows in this case, and in the rest of the proof we can assume that the
number of servers is already at the quota at time ηs.

First, we prove that N(ηs) ≥ N(η) for η ∈ [ηs, ηs+1), i.e., the first part of the claim. Let us
fix some η ∈ [ηs, ηs+1). Note that by the definition of the horizon, we have that Aη = Aηs and
λη = ληs . So, for our purposes, it suffices to show that whenever Aη = Aη

+
= A, and λη = λη

+
= λ,

for η+ = η + dη, we have that N(η) ≥ N(η+). This follows immediately from Claim 26.
Now, to prove the second part of the claim, let us assume that none of the events mentioned

in the statement of the claim occurred at time ηs+1, otherwise we are already done. So, we have,
in particular, that ληsi,j = λ

ηs+1

i,j = λi,j for each (i, j). This implies that if there is an (i, j) with
y
ηs+1

i,j = yηsi,j = 1 that becomes active at time ηs+1, then by Definition 9 it must be the case that

N(ηs) > αληsi,j = αλ
ηs+1

i,j ≥ N(ηs+1).

So, in this case N(ηs) ≥ N(ηs+1), and thus we can restrict ourselves to the scenario in which the
only coordinates (i, j) that become active at time ηs+1 have yηs+1

i,j = 0. As a result, we have

Aηs+1 = (Aηs \ (A0
− ∪A1

−)) ∪A+,

where A0
− is the set of coordinates (i, j) such that (i, j) 0-inactivates at time ηs+1, A1

− contains
(i, j)-s which 1-inactivate at that time and yηsi,j = 1, and A+ is the set of (i, j)-s that become active
at time ηs+1 with y

ηs+1

i,j = 0.
Now, observe that if some (i, j) ∈ A1

−, then we need to have αλi,j ≥ N(ηs). Otherwise, (i, j)
would have already been inactive at time ηs. Furthermore, we actually need to have αλi,j = N(ηs),
as otherwise the derivative of yηi,j would be negative in the interval [ηs, ηs+1), contradicting the fact
that yηs+1

i,j = 1. (Recall that we have already proved that N(η) – and thus all the derivatives – do
not increase in the interval [ηs, ηs+1).)

So, by the above, and Definition 9, we can conclude that

αλi,j ≥ N(ηs+1) for each (i, j) ∈ A0
−, (64)

αλi,j = N(ηs) for each (i, j) ∈ A1
−, (65)

αλi,j < N(ηs+1) for each (i, j) ∈ A+. (66)

On the other hand, we can express N(ηs+1) as the weighted average of αλi,js over the set Aηs+1

(cf. Claim 26), i.e. we have

N(ηs+1) =

∑
(i,j)∈Aηs+1 u

ηs+1

i,j · αλi,j∑
(i,j)∈Aηs+1 u

ηs+1

i,j

,

46

where uηi,j = 1
wi

(
yηi,j + β

)
.

Now, as Aηs+1 = (Aηs \ (A0
− ∪ A1

−)) ∪ A+, we can utilize conditions (64) and (66) to bound
N(ηp+1) from above by a corresponding weighted average of αλi,j-s over the set Aηs \ A1

−. In
particular, we have

N(ηs+1) =

∑
(i,j)∈Aηs+1 u

ηs+1

i,j · αλi,j∑
(i,j)∈Aηs+1 u

ηs+1

i,j

=

∑
(i,j)∈((Aηs\(A0

−∪A1
−))∪A+) u

ηs+1

i,j · αλi,j∑
(i,j)∈((Aηs\(A0

−∪A1
−))∪A+) u

ηs+1

i,j

≤

∑
(i,j)∈(Aηs\A1

−) u
ηs+1

i,j · αλi,j∑
(i,j)∈(Aηs\A1

−) u
ηs+1

i,j

, (67)

where the last inequality follows as for any a, b > 0, a
b ≤

a+c1t1−c2t2
b+t1−t2 , whenever c1 ≥ a

b , c2 ≤ a
b , and

t1 ≥ 0, b > t2 ≥ 0.
If the last expression in (67) is at most N(ηs), then we are already done. So, let us assume,

for the sake of contradiction, that it is strictly larger than N(ηs). In this case, by (66), we need to
have that also ∑

(i,j)∈Aηs u
ηs+1

i,j · αλi,j∑
(i,j)∈Aηs u

ηs+1

i,j

> N(ηs), (68)

as for any a, b, c, t > 0, if a
b > c, then also a+ct

b+t > c. However, by applying Claim 26 with A = Aηs ,
we have that ∑

(i,j)∈Aηs u
ηs+1

i,j · αλi,j∑
(i,j)∈Aηs u

ηs+1

i,j

≤
∑

(i,j)∈Aηs u
ηs
i,j · αλi,j∑

(i,j)∈Aηs u
ηs
i,j

= N(ηs),

contradicting (68), and thus proving that indeed N(ηs) ≥ N(ηs+1). The proof of the claim is now
concluded.

Now, we are ready to bound the number of events of type (a). To show that the number of
these events is finite, it suffices to show that the number of 0-inactivations and 1-inactivations is
finite. Also, observe that during the period in which the number of servers is below the quota, by
definition, we have N(η) = 0, and thus variables can only decrease. As a result, coordinates can
only 0-inactivate in that period, and once they become inactive they stay that way. Hence, we have
at most kd such events.

In light of the above, we can focus on analyzing the events after reaching the quota. Note that in
this case we can assume that N(η) > 0. (If N(η) = 0, then all derivatives are equal to zero, and the
desired bounds trivially follow.) As we have that ληi,j is always zero when i 6= i, N(η) > 0 implies
that coordinates (i, j) with i 6= i can only increase, and once they 1-inactivate they stay inactive.
As a consequence, it suffices to show that the number of 0-inactivations and 1-inactivations is finite
for all coordinates (i, j) with i = i. In order to do so, we prove the following claim.

Claim 29. The total number of 1-inactivations of coordinates (i, j) is finite.

Proof. We will prove the claim first for j = k and then consider consecutive j-s in decreasing order.
As a result, our task is to prove for a given j, that (i, j) 1-inactivates a finite number of times,
provided that the number of 1-inactivations is finite for all coordinates (i, j′) with j < j′ ≤ k.

To this end, we argue that whenever there are two consecutive 1-inactivations of some coordinate
(i, j) – the first one at time ηs′ , and the second one at time ηs′′ – then in the interval [ηs′ , ηs′′] we

47

have either a block merge, or the quota is hit, or a 1-activation of a coordinate (i′, j′) that has
either i′ 6= i or j′ > j. As we know that the number of occurrences of each of these events is finite,
we get the desired proof.

To establish the above, let ηs for s′ < s < s′′ be the time in which (i, j) is activated between the
two 1-inactivations. Observe that as N(ηs) ≤ αλi,j and N(ηs′′) > αλi,j , there is a time ηs∗ with
s < s∗ ≤ s′′ in which N(η) increases above αλi,j . (Recall that by Claim 28 we know that N(η) can
increase only at horizons.) Without loss of generality we take s∗ to be the first s > s corresponding
to such an increase.

Now, in light of Claim 28, we know that N(η) increases at time ηs∗ . Thus, to conclude our proof
it suffices to show that if we have a coordinate (i′, j′) that 1-inactivates at time ηs∗ and y

ηs∗−1

i′,j′ < 1,
then we cannot have i′ = i and j′ ≤ j.

We consider two cases here. The first one corresponds to s∗ < s′′. In this case we have
y
ηs∗

i,j
< 1, as otherwise (i, j) would be 1-inactivated already at time s∗, instead of s′′. However, by

the monotonicity property (4), we have that yηs∗
i,j′′
≤ y

ηs∗

i,j
for all j′′ ≤ j. So, if i′ = i, then (i′, j′)

cannot 1-inactivate at time ηs∗ if j′ ≤ j, and the claim follows.
Consider now the remaining case of s∗ = s′′. If we have i′ = i and j′ ≤ j, then we must have

λi,j′ ≥ λi,j . Otherwise, condition (8) for block merge would trigger at time ηs′′ . As a result, by
(58), we know that in the interval of our interest the derivatives of yη

i,j′
are bounded from above by

the derivatives of yη
i,j

.

Furthermore, we have that the derivative of yη
i,j

is always non-positive for η ∈ [ηs, ηs′′). This is
so, as by the definition of s∗, N(η) ≤ αλi,j for η ∈ [ηs, ηs∗) = [ηs, ηs′′). As a consequence, we must
have both yη

i,j
and yη

i,j′
to be equal to 1 for all η ∈ [ηs, ηs′′), as otherwise these variables would not

be able to reach 1 at time ηs′′ . This, however, contradicts the fact that y
ηs∗−1

i′,j′ has to be strictly
smaller than 1, as s∗ − 1 = s′′ − 1 ≥ s. Thus, we cannot have i′ = i and j′ ≤ j and our claim
follows.

Finally, it remains to bound the number of 0-activations of coordinates (i, j). We do this by
simply noting that if there are two consecutive 0-activations of some coordinate (i, j), then N(η)
has to increase at least once between these two events. But, by Claim 27, it means that one of the
events, (whose total number is already bounded), would also occur in this period. Therefore, the
number of 0-activations is also finite and we can conclude the proof of Lemma 11.

B Proof of Lemma 22

Here we prove Lemma 22. As mentioned earlier, the proof is implicit in the work of [16], and we
make it explicit here for completeness. We begin with some notation, and state another result that
we need.

Let M be an arbitrary metric space. Let C[0] denote the configuration specifying the initial
location of the k-servers. We assume that the servers are labeled, so for every k′ ≤ k, the first
k′ entries of C[0] specify the location of the first k′ servers. Let ρ be some fixed k-server request
sequence. Let Opt(k′, X) denote the optimum cost of serving ρ with k′ servers on M , starting in
C[0] and ending in configuration X (for notational ease, we are suppressing the dependence on
ρ,M,C[0] here). Let Opt(k′) = minX Opt(k′, X), denote the minimum cost of server ρ starting in
C[0].

48

Lemma 30 ([16], Corollary 2). Let ρ be some fixed request sequence and C[0] be some fixed initial
configuration. For any k1, k2 ∈ [k], given any state X on k1 locations, there exists another state Y
such that

1. |X ∩ Y | = min(|X|, |Y |), i.e. Y overlaps with X as much as possible, and

2. Opt(k2, Y) ≤ Opt(k2) + Opt(k1, X) − Opt(k1). That is, the excess cost incurred for an
optimum k2-server solution to end in Y , is no more than the excess cost incurred for the
optimum k1-server to end in X.

This lemma and its proof can be found in [16] (Corollary 2).
Let T be a weighted σ-HST. Again, for notational convenience, let us drop ρ, C[0], and the

underlying metric T from the notation (these remain the same, and dropping them will not cause
any confusion). Given a quota pattern κ, recall the definition of Optcost(κ, t) as the optimum
cost of serving ρ until time t with quota pattern κ. We also use Optcost(κ) = Optcost(κ,∞) to
denote the optimum cost of serving the entire sequence ρ. As previously, let us define ht(κ) =
Optcost(κ(t) · ~1, t) − Optcost(κ(t) · ~1, t − 1) and g(κ) =

∑
t≥1 |κ(t) − κ(t − 1)|. Let D denote the

diameter of T .
We will prove the following, which is the same as Lemma 22. (In that notation, note that

∆ ≤W (p)/(σ − 1) for T (p).)

Theorem 31. ∑
t

ht(κ)−∆ · g(κ) ≤ Optcost(κ) ≤
∑
t

ht(κ) + ∆ · g(κ).

Proof. We do an induction on the value of g(κ). In the base case, when g(κ) = 0, the vector κ is
constant throughout, say κ = k · ~1. In this case, the claimed result holds trivially as the sum over
ht telescopes and we obtain∑

t

ht(κ) =
∑
t

(Optcost(k ·~1, t)−Optcost(k ·~1, t− 1)) = Optcost(κ).

So, let κ be such that g(κ) > 0. Let τ be the earliest time when κ(τ) 6= κ(τ + 1). Define a new
quota pattern κ′ as

κ′(t) =

{
κ(τ + 1) if t ≤ τ
κ(t) if t > τ .

Note that both κ and κ′ are constant for t ≤ τ . Also, g(κ′) = g(κ)− |κ(τ + 1)− κ(τ)| < g(κ), and
hence we can inductively assume that the claimed result holds for κ′.

We first show that Optcost(κ) ≥
∑

t h
t(κ) − D · g(κ). Fix some solution that attains cost

Optcost(κ) and let C[t] denote its configuration at time t. Applying Lemma 30 with X = C(τ)
and k1 = κ(τ) and k2 = κ′(τ), there is some configuration Y satisfying

Optcost(k2 ·~1, τ, Y) ≤ Optcost(k2 ·~1, τ) + Optcost(k1 ·~1, τ,X)−Optcost(k1 ·~1, τ) (69)

|X ∩ Y | = min(k1, k2). (70)

We construct a solution S′ corresponding to κ′ as follows: Until time τ , S′ follows the solution
Optcost(k2 · ~1, τ, Y). Then, after serving the request at t = τ , it switches to state C[τ] = X, and
henceforth for t > τ sets its the configurations C ′[t] = C[t]. Now

cost(S′) = Optcost(k2 ·~1, τ, Y) + c(Y,X) +Q,

49

where c(Y,X) is the cost of moving from state Y to X, and Q is the contribution of the solution
Optcost(κ) starting from time τ and state X (recall that C[τ] = X).

It is easily checked that the solution S′ constructed above is feasible for quota pattern κ′. As
the optimum solution for κ′ can only be better, cost(S′) ≥ Optcost(κ′) and since Optcost(κ′) ≥∑

t h
t(κ′)−D · g(κ′) by the inductive hypothesis, it follows that∑

t

ht(κ′)−D · g(κ′) ≤ cost(S′) = Optcost(k2 ·~1, τ, Y) + c(Y,X) +Q. (71)

By (70), |Y ∩ X| = min(k1, k2) and hence c(Y,X) ≤ D|k2 − k1| = D|κ(τ + 1) − κ(τ)|. Thus
c(Y,X) +D · g(κ′) ≤ D · g(κ), and hence (71) implies that

Q ≥
∑
t

ht(κ′)−D · g(κ)−Optcost(k2 ·~1, τ, Y). (72)

On the other hand, as X = C[τ] we have

Optcost(κ) = Optcost(κ, τ,X) +Q = Optcost(k1 ·~1, τ,X) +Q.

Thus by (72),

Optcost(κ) ≥ Optcost(k1 ·~1, τ,X)−Optcost(k2 ·~1, τ, Y) +
∑
t

ht(κ′)−D · g(κ)

≥ Optcost(k1 ·~1, τ)−Optcost(k2 ·~1, τ) +
∑
t

ht(κ′)−D · g(κ) (73)

=
∑
t

ht(κ)−D · g(κ), (74)

implying the desired lower bound. Here (73) follows from (69), and (74) follows from (73) since

τ∑
t=1

ht(κ) = Optcost(k1 ·~1, τ),

τ∑
t=1

ht(κ′) = Optcost(k2 ·~1, τ),

and
∑

t h
t(κ)−

∑
t h

t(κ′) =
∑τ

t=1 h
t(κ)−

∑τ
t=1 h

t(κ′), since κ, and κ′ are the same for any t > τ .
We now show show the upper bound on Optcost(κ). The proof is similar to the one above. Let

κ′ be defined as previously. Let {C ′[t]}t denote the configurations for some fixed solution that has
value Optcost(κ′). Applying Lemma 30 with X = C ′[τ],k1 = κ′(τ) and k2 = κ(τ), we obtain a
configuration Y satisfying

Optcost(k2 ·~1, τ, Y) ≤ Optcost(k2 ·~1, τ) + Optcost(k1 ·~1, τ,X)−Optcost(k1 ·~1, τ) (75)

|X ∩ Y | = min(k1, k2). (76)

Consider the following solution S corresponding to κ: Until time τ , S mimics the solution Optcost(k2·
~1, τ, Y). Then, after serving the request at t = τ , it switches to state C ′[τ] = X, and henceforth
for t > τ sets its the configurations C[t] = C ′[t]. Now

cost(S) = Optcost(k2 ·~1, τ, Y) + c(Y,X) +Q,

50

where Q is the cost of solution Optcost(κ′) incurred from time τ starting at state Y . Again S is
feasible for quota κ, and hence Optcost(κ) ≤ cost(S). By definition of X,

Optcost(κ′) = Optcost(k1 ·~1, τ,X) +Q.

Thus,

Optcost(κ) ≤ Optcost(k2 ·~1, τ, Y) + c(Y,X) + Optcost(κ′)−Optcost(k1 ·~1, τ,X).

As Optcost(κ′) ≤
∑

t h
t(κ′)+D ·g(κ′) by the inductive hypothesis and c(Y,X)+D ·g(κ′) ≤ D ·g(κ),

we obtain

Optcost(κ) ≤ Optcost(k2 ·~1, τ, Y) +
∑
t

ht(κ′) +D · g(κ)−Optcost(k1 ·~1, τ,X) (77)

≤ Optcost(k2 ·~1, τ)−Optcost(k1 ·~1, τ) +
∑
t

ht(κ′)−D · g(κ) (78)

=
∑
t

ht(κ)−D · g(κ), (79)

implying the desired inequality. Here (78) follows from (75), and (79) follows by noting that

∑
t

ht(κ′)−
∑
t

ht(κ) =

τ∑
t=1

ht(κ′)−
τ∑
t=1

ht(κ) = Optcost(k1 ·~1, τ)−Optcost(k2 ·~1, τ).

51

	Introduction
	Our Result
	Preliminaries

	Overview of Our Approach
	The Fractional Allocation Problem
	Description of the Algorithm
	Cost Accounting
	Competitive Analysis

	Fractional k-server on Weighted HSTs
	The algorithm
	Feasibility
	Performance analysis

	Weighted HSTs and Online Rounding
	Embedding -HSTs into Weighted -HSTs:
	Rounding the Fractional k-server Solution Online

	Proof of Lemma 11
	Proof of Lemma 22

